Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T07:54:31.986Z Has data issue: false hasContentIssue false

Part III - Implications for the Formation and Evolution of the Solar System

Published online by Cambridge University Press:  01 April 2022

Simone Marchi
Affiliation:
Southwest Research Institute, Boulder, Colorado
Carol A. Raymond
Affiliation:
California Institute of Technology
Christopher T. Russell
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Vesta and Ceres
Insights from the Dawn Mission for the Origin of the Solar System
, pp. 197 - 264
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abod, C. P., Simon, J. B., Li, R., et al. (2019) The mass and size distribution of planetesimals formed by the streaming instability. II. The effect of the radial gas pressure gradient. The Astrophysical Journal, 883, 192.Google Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.Google Scholar
Andrews, S. M., Huang, J., Pérez, L. M., et al. (2018) The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, sample, calibration, and overview. The Astrophysical Journal, 869, L41.Google Scholar
Bai, X.-N., & Stone, J. M. (2010) Dynamics of solids in the midplane of protoplanetary disks: Implications for planetesimal formation. The Astrophysical Journal, 722, 14371459.CrossRefGoogle Scholar
Balbus, S. A., Hawley, J. F. (1991) A powerful local shear instability in weakly magnetized disks. I. Linear analysis. The Astrophysical Journal, 376, 214.CrossRefGoogle Scholar
Barge, P., & Sommeria, J. (1995) Did planet formation begin inside persistent gaseous vortices? Astronomy and Astrophysics, 295, L1L4.Google Scholar
Birnstiel, T., Klahr, H., & Ercolano, B. (2012) A simple model for the evolution of the dust population in protoplanetary disks. Astronomy and Astrophysics, 539, A148.Google Scholar
Bolin, B. T., Delbo, M., Morbidelli, A., & Walsh, K. J. (2017). Yarkovsky V-shape identification of asteroid families. Icarus, 282, 290312.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. (2005) The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.Google Scholar
Bottke, W. F., Vokrouhlický, D., Rubincam, D. P., & Nesvorný, D. (2006) The Yarkovsky and Yorp effects: Implications for asteroid dynamics. Annual Review of Earth and Planetary Sciences, 34, 157191.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., et al. (2016) Dynamical dispersal of primordial asteroid families. Icarus, 266, 142151.Google Scholar
Brož, M., Morbidelli, A., Bottke, W. F., et al. (2013) Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astronomy and Astrophysics, 551, A117.CrossRefGoogle Scholar
Carrera, D., Johansen, A., & Davies, M. B. (2015) How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astronomy and Astrophysics, 579, A43.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651.Google Scholar
Cuzzi, J. N., Hogan, R. C., Paque, J. M., & Dobrovolskis, A. R. (2001) Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. The Astrophysical Journal, 546, 496508.Google Scholar
Cuzzi, J. N., Hogan, R. C., & Shariff, K. (2008) Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. The Astrophysical Journal, 687, 14321447.CrossRefGoogle Scholar
Davis, D. R., Chapman, C. R., Weidenschilling, S. J., & Greenberg, R. (1985) Collisional history of asteroids: Evidence from Vesta and the Hirayama families. Icarus, 62, 3053.Google Scholar
DeFelice, J. D., Friedrich, J. M., Ebel, D. S., Flores, K. E., & Weisberg, M. K. (2019) Analysis of the shapes of CAIs in CV chondrites using 2D and 3D petrography. Lunar and Planetary Science Conference, 2919.Google Scholar
Delbo, M., Avdellidou, C., & Morbidelli, A. (2019) Ancient and primordial collisional families as the main sources of X-type asteroids of the inner Main Belt. Astronomy and Astrophysics, 624, A69.CrossRefGoogle Scholar
Delbo, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. (2017) Identification of a primordial asteroid family constrains the original planetesimal population. Science, 357, 10261029.Google Scholar
Dittrich, K., Klahr, H., & Johansen, A. (2013) Gravoturbulent planetesimal formation: The positive effect of long-lived zonal flows. The Astrophysical Journal, 763, 117.CrossRefGoogle Scholar
Durda, D. D., Bottke, W. F., Nesvorný, D., et al. (2007) Size-frequency distributions of fragments from SPH/N-body simulations of asteroid impacts: Comparison with observed asteroid families. Icarus, 186, 498516.CrossRefGoogle Scholar
Gail, H.-P., & Trieloff, M. (2019) Thermal history modelling of the L chondrite parent body. Astronomy and Astrophysics, 628, A77.CrossRefGoogle Scholar
Gerbig, K., Lenz, C. T., & Klahr, H. (2019) Linking planetesimal and dust content in protoplanetary disks via a local toy model. Astronomy and Astrophysics, 629, A116.Google Scholar
Gerbig, K., Murray-Clay, R. A., Klahr, H., & Baehr, H. (2020) Requirements for gravitational collapse in planetesimal formation – The impact of scales set by Kelvin-Helmholtz and nonlinear streaming instability. The Astrophysical Journal, 895, 91.Google Scholar
Goldreich, P., & Ward, W. R. (1973) The formation of planetesimals. The Astrophysical Journal, 183, 10511062.CrossRefGoogle Scholar
Gole, D. A., Simon, J. B., Li, R., Youdin, A. N., & Armitage, P. J. (2020) Turbulence regulates the rate of planetesimal formation via gravitational collapse. The Astrophysical Journal, 904, 132.Google Scholar
Gómez, G. C., Ostriker, E. C. (2005) The effect of the coriolis force on Kelvin-Helmholtz-driven mixing in protoplanetary disks. The Astrophysical Journal, 630, 10931106.Google Scholar
Haisch, K. E., Lada, E. A., & Lada, C. J. (2001) Disk frequencies and lifetimes in young clusters. The Astrophysical Journal, 553, L153L156.Google Scholar
Hayashi, C. (1981) Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Progress of Theoretical Physics Supplement, 70, 3553.CrossRefGoogle Scholar
Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W. H., & Kleine, T. (2012) Thermal history modelling of the H chondrite parent body. Astronomy and Astrophysics, 545, A135.Google Scholar
Johansen, A., Henning, T., & Klahr, H. (2006a) Dust sedimentation and self-sustained Kelvin-Helmholtz turbulence in protoplanetary disk midplanes. The Astrophysical Journal, 643, 12191232.CrossRefGoogle Scholar
Johansen, A., Klahr, H., & Henning, T. (2006b) Gravoturbulent formation of planetesimals. The Astrophysical Journal, 636, 11211134.Google Scholar
Johansen, A., Mac Low, M.-M., Lacerda, P., & Bizzarro, M. (2015) Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 1, 1500109.Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.CrossRefGoogle ScholarPubMed
Johansen, A., & Youdin, A. (2007) Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration. The Astrophysical Journal, 662, 627641.CrossRefGoogle Scholar
Johansen, A., Youdin, A. N., & Lithwick, Y. (2012) Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. Astronomy and Astrophysics, 537, A125.CrossRefGoogle Scholar
Klahr, H., & Bodenheimer, P. (2006) Formation of giant planets by concurrent accretion of solids and gas inside an anticyclonic vortex. The Astrophysical Journal, 639, 432440.Google Scholar
Klahr, H. H., & Henning, T. (1997) Particle-trapping eddies in protoplanetary accretion disks. Icarus, 128, 213229.Google Scholar
Klahr, H., Pfeil, T., & Schreiber, A. (2018) Instabilities and flow structures in protoplanetary disks: Setting the stage for planetesimal formation. Handbook of Exoplanets, 138, 22512286.Google Scholar
Klahr, H., & Schreiber, A. (2016) Linking the origin of asteroids to planetesimal formation in the solar nebula. Asteroids: New Observations, New Models, 318, 18.Google Scholar
Klahr, H., & Schreiber, A. (2020) Turbulence sets the length scale for planetesimal formation: Local 2D simulations of streaming instability and planetesimal formation. The Astrophysical Journal, 901, 54.Google Scholar
Kokubo, E., & Ida, S. (2012) Dynamics and accretion of planetesimals. Progress of Theoretical and Experimental Physics, 2012, 01A308.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., & Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Science (USA), 114, 67126716.Google Scholar
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020) The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4, 3240.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. (2014) Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Lenz, C. T., Klahr, H., & Birnstiel, T. (2019) Planetesimal population synthesis: Pebble flux-regulated planetesimal formation. The Astrophysical Journal, 874, 36.Google Scholar
Lenz, C. T., Klahr, H., Birnstiel, T., Kretke, K., & Stammler, S. (2020) Constraining the parameter space for the solar nebula. The effect of disk properties on planetesimal formation. Astronomy and Astrophysics, 640, A61.CrossRefGoogle Scholar
Li, R., Youdin, A. N., & Simon, J. B. (2018) On the numerical robustness of the streaming instability: Particle concentration and gas dynamics in protoplanetary disks. The Astrophysical Journal, 862, 14.Google Scholar
Li, R., Youdin, A. N., & Simon, J. B. (2019) Demographics of planetesimals formed by the streaming instability. The Astrophysical Journal, 885, 69.CrossRefGoogle Scholar
Liu, B., Ormel, C. W., & Johansen, A. (2019) Growth after the streaming instability. From planetesimal accretion to pebble accretion. Astronomy and Astrophysics, 624, A114.Google Scholar
Mac Low, M.-M., & Klessen, R. S. (2004) Control of star formation by supersonic turbulence. Reviews of Modern Physics, 76, 125194.Google Scholar
Manger, N., & Klahr, H. (2018) Vortex formation and survival in protoplanetary discs subject to vertical shear instability. Monthly Notices of the Royal Astronomical Society, 480, 21252136.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690.Google Scholar
Michel, P., Benz, W., Tanga, P., & Richardson, D. C. (2001) Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science, 294, 16961700.Google Scholar
Michel, P., & Richardson, D. C. (2013) Collision and gravitational reaccumulation: Possible formation mechanism of the asteroid Itokawa. Astronomy and Astrophysics, 554, L1.CrossRefGoogle Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. (2009) Asteroids were born big. Icarus, 204, 558573.Google Scholar
Morbidelli, A., Libourel, G., Palme, H., Jacobson, S. A., & Rubie, D. C. (2020) Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk. Earth and Planetary Science Letters, 538, 116220.Google Scholar
Nakagawa, Y., Sekiya, M., & Hayashi, C. (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus, 67, 375390.Google Scholar
Nesvorný, D., Bottke, W. F., Levison, H. F., & Dones, L. (2003) Recent origin of the Solar System dust bands. The Astrophysical Journal, 591, 486497.Google Scholar
Nesvorný, D., Brož, M., & Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 297321.Google Scholar
Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. (2019) Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 3, 808812.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018) Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nature Astronomy, 2, 878882.Google Scholar
Ormel, C. W., & Klahr, H. H. (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astronomy and Astrophysics, 520, A43.CrossRefGoogle Scholar
Oszkiewicz, D., Kankiewicz, P., Włodarczyk, I., & Kryszczyńska, A. (2015) Differentiation signatures in the Flora region. Astronomy and Astrophysics, 584, A18.Google Scholar
Raettig, N., Klahr, H., & Lyra, W. (2015) Particle trapping and streaming instability in vortices in protoplanetary disks. The Astrophysical Journal, 804, 35.Google Scholar
Safronov, V. S. (1969) Evoliutsiia doplanetnogo oblaka. Evolution of the protoplanetary cloud and formation of the earth and planets. Translated from Russian. Jerusalem: Israel Program for Scientific Translations, Keter Publishing House, 212 p.Google Scholar
Schreiber, A., & Klahr, H. (2018) Azimuthal and vertical streaming instability at high dust-to-gas ratios and on the scales of planetesimal formation. The Astrophysical Journal, 861, 47.CrossRefGoogle Scholar
Sekiya, M., & Ishitsu, N. (2000) Shear instabilities in the dust layer of the solar nebula I. The linear analysis of a non-gravitating one-fluid model without the Coriolis and the solar tidal forces. Earth, Planets, and Space, 52, 517526.Google Scholar
Sekiya, M., & Onishi, I. K. (2018) Two key parameters controlling particle clumping caused by streaming instability in the dead-zone dust layer of a protoplanetary disk. The Astrophysical Journal, 860, 140.Google Scholar
Shakura, N. I., & Sunyaev, R. A. (1973) Black holes in binary systems. Observational appearance. Astronomy and Astrophysics, 500, 3351.Google Scholar
Simon, J. B., Armitage, P. J., Li, R., & Youdin, A. N. (2016) The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. The Astrophysical Journal, 822, 55.Google Scholar
Spoto, F., Milani, A., & Knežević, Z. (2015) Asteroid family ages. Icarus, 257, 275289.Google Scholar
Squire, J., & Hopkins, P. F. (2018) Resonant drag instabilities in protoplanetary discs: The streaming instability and new, faster growing instabilities. Monthly Notices of the Royal Astronomical Society, 477, 50115040.Google Scholar
Sugiura, N., & Fujiya, W. (2014) Correlated accretion ages and ∊54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteoritics and Planetary Science, 49, 772787.CrossRefGoogle Scholar
Throop, H. B., & Bally, J. (2005) Can photoevaporation trigger planetesimal formation? The Astrophysical Journal, 623, L149L152.Google Scholar
Toomre, A. (1964) On the gravitational stability of a disk of stars. The Astrophysical Journal, 139, 12171238.Google Scholar
Tsirvoulis, G., Morbidelli, A., Delbo, M., & Tsiganis, K. (2018) Reconstructing the size distribution of the primordial Main Belt. Icarus, 304, 1423.Google Scholar
Umurhan, O. M., Estrada, P. R., & Cuzzi, J. N. (2020) Streaming instability in turbulent protoplanetary disks. The Astrophysical Journal, 895, 4.Google Scholar
Urpin, V., & Brandenburg, A. (1998) Magnetic and vertical shear instabilities in accretion discs. Monthly Notices of the Royal Astronomical Society, 294, 399406.CrossRefGoogle Scholar
Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler, T. S. (2015) The Yarkovsky and YORP effects. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 509531.Google Scholar
Walsh, K. J., Delbó, M., Bottke, W. F., Vokrouhlický, D., & Lauretta, D. S. (2013) Introducing the Eulalia and new Polana asteroid families: Re-assessing primitive asteroid families in the inner Main Belt. Icarus, 225, 283297.Google Scholar
Windmark, F., Birnstiel, T., Güttler, C., et al. (2012) Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. Astronomy and Astrophysics, 540, A73.Google Scholar
Yang, C.-C., Johansen, A., & Carrera, D. (2017) Concentrating small particles in protoplanetary disks through the streaming instability. Astronomy and Astrophysics, 606, A80.Google Scholar
Youdin, A. N., & Goodman, J. (2005) Streaming instabilities in protoplanetary disks. The Astrophysical Journal, 620, 459469.Google Scholar
Youdin, A. N., & Lithwick, Y. (2007) Particle stirring in turbulent gas disks: Including orbital oscillations. Icarus, 192, 588604.Google Scholar
Youdin, A. N., & Shu, F. H. (2002) Planetesimal formation by gravitational instability. The Astrophysical Journal, 580, 494505.Google Scholar
Zappala, V., Cellino, A., Farinella, P., & Knezevic, Z. (1990) Asteroid families. I. Identification by hierarchical clustering and reliability assessment. The Astronomical Journal, 100, 2030.Google Scholar

References

Alexander, C. M. O. (2019a) Quantitative models for the elemental and isotopic fractionations in chondrites: The carbonaceous chondrites. Geochimica et Cosmochimica Acta, 254, 277309.CrossRefGoogle Scholar
Alexander, C. M. O. (2019b) Quantitative models for the elemental and isotopic fractionations in the chondrites: The non-carbonaceous chondrites. Geochimica et Cosmochimica Acta, 254, 246276.Google Scholar
Alexander, C. M. O., Grossman, J. N., Ebel, D. S., & Ciesla, F. J. (2008) The formation conditions of chondrules and chondrites. Science, 320, 16171619.Google Scholar
Alexander, C. M. O., McKeegan, K. D., & Altwegg, K. (2018) Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214, 36.Google Scholar
Alibert, Y., Venturini, J., Helled, R., et al. (2018) The formation of Jupiter by hybrid pebble–planetesimal accretion. Nature Astronomy, 2, 873877.Google Scholar
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. (2010) U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343350.Google Scholar
Amelin, Y., & Krot, A. (2007) Pb isotopic age of the Allende chondrules. Meteoritics & Planetary Science, 42, 13211335.Google Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., & Ulyanov, A. A. (2002) Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 1678.Google Scholar
Barrett, T. J., Barnes, J. J., Tartèse, R., et al. (2016) The abundance and isotopic composition of water in eucrites. Meteoritics & Planetary Science, 51, 11101124.Google Scholar
Benedix, G. K., McCoy, T. J., Keil, K., & Love, S. G. (2000) A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-winonaite parent body. Meteoritics & Planetary Science, 35, 11271141.Google Scholar
Bermingham, K. R., Füri, E., Lodders, K., & Marty, B. (2020) The NC–CC isotope dichotomy: Implications for the chemical and isotopic evolution of the early Solar System. Space Science Reviews, 216, 133.Google Scholar
Bermingham, K. R., Gussone, N., Mezger, K., & Krause, J. (2018a) Origins of mass-dependent and mass-independent Ca isotope variations in meteoritic components and meteorites. Geochimica et Cosmochimica Acta, 226, 206223.Google Scholar
Bermingham, K. R., Mezger, K., Scherer, E. E., et al. (2016) Barium isotope abundances in meteorites and their implications for early Solar System evolution. Geochimica et Cosmochimica Acta, 175, 282298.Google Scholar
Bermingham, K. R., Worsham, E. A., & Walker, R. J. (2018b) New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics. Earth and Planetary Science Letters, 487, 221229.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186.Google Scholar
Birnstiel, T., Dullemond, C. P., & Pinilla, P. (2013) Lopsided dust rings in transition disks. Astronomy & Astrophysics, 550, L8.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H., & Lundgaard, K. L. (2005) Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophysics Journal, 632, L41L44.Google Scholar
Blackburn, T., Alexander, C. M. O., Carlson, R., & Elkins-Tanton, L. T. (2017) The accretion and impact history of the ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 200, 201217.Google Scholar
Blum, J., & Wurm, G. (2000) Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus, 143, 138146.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.Google Scholar
Bollard, J., Kawasaki, N., Sakamoto, N., et al. (2019) Combined U-corrected Pb–Pb dating and 26Al–26Mg systematics of individual chondrules – Evidence for a reduced initial abundance of 26Al amongst inner Solar System chondrules. Geochimica et Cosmochimica Acta, 260, 6283.Google Scholar
Brasser, R., & Mojzsis, S. J. (2020) The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 4, 492499.Google Scholar
Brennecka, G. A., Borg, L. E., & Wadhwa, M. (2013) Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis. Proceedings of the National Academy of Sciences (USA), 110, 17241.CrossRefGoogle ScholarPubMed
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U Variations in meteorites: Extant 247Cm and implications for Pb–Pb dating. Science, 327, 449451.Google Scholar
Buchwald, V. F. (1975) Handbook of Iron Meteorites: Their History, Distribution, Composition, and Structure, in 3 volumes. Berkeley: University of California Press.Google Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016) Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.Google Scholar
Budde, G., Burkhardt, C., & Kleine, T. (2019) Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, 3, 736741.Google Scholar
Budde, G., Kruijer, T. S., & Kleine, T. (2018) Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 284304.Google Scholar
Burbine, T. H. (1998) Could G-class asteroids be the parent bodies of the CM chondrites? Meteoritics & Planetary Science, 33, 253258.Google Scholar
Burkhardt, C., Dauphas, N., Hans, U., Bourdon, B., & Kleine, T. (2019) Elemental and isotopic variability in Solar System materials by mixing and processing of primordial disk reservoirs. Geochimica et Cosmochimica Acta, 261, 145170.Google Scholar
Burkhardt, C., Kleine, T., Dauphas, N., & Wieler, R. (2012) Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust. Earth and Planetary Science Letters, 357–358, 298307.Google Scholar
Burkhardt, C., Kleine, T., Oberli, F., et al. (2011) Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth and Planetary Science Letters, 312, 390400.CrossRefGoogle Scholar
Cameron, A. G. W., & Truran, J. W. (1977) The supernova trigger for formation of the Solar System. Icarus, 30, 447461.Google Scholar
Carrozzo, F. G., De Sanctis, M. C., Raponi, A., et al. (2018) Nature, formation, and distribution of carbonates on Ceres. Science Advances, 4, e1701645.Google Scholar
Clayton, D. D. (1982) Cosmic chemical memory: a new astronomy. Quarterly Journal of the Royal Astronomical Society, 23, 174212.Google Scholar
Clayton, R. N. (1993) Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences, 21, 115149.Google Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., & Bizzarro, M. (2008) Chronology of the Solar System’s oldest solids. Astrophysics Journal, 675, L121L124.Google Scholar
Connelly, J. N., & Bizzarro, M. (2009) Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chemical Geology, 259, 143151.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Crida, A., Morbidelli, A., & Masset, F. (2006) On the width and shape of gaps in protoplanetary disks. Icarus, 181, 587604.Google Scholar
Dauphas, N., & Chaussidon, M. (2011) A perspective from extinct radionuclides on a young stellar object: The sun and its accretion disk. Annual Review of Earth and Planetary Sciences, 39, 351386.Google Scholar
Dauphas, N., Marty, B., & Reisberg, L. (2002) Molybdenum nucleosynthetic dichotomy revealed in primitive meteorites. Astrophysics Journal, 569, L139L142.Google Scholar
Dauphas, N., & Schauble, E. A. (2016) Mass fractionation laws, mass-independent effects, and isotopic anomalies. Annual Review of Earth and Planetary Sciences, 44, 709783.Google Scholar
Davis, A. M., Zhang, J., Greber, N. D., et al. (2018) Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal processing and gas-dust decoupling in the protoplanetary disk. Geochimica et Cosmochimica Acta, 221, 275295.Google Scholar
Day, J. M. D., & Moynier, F. (2014) Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130259.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697.Google Scholar
De Sanctis, M. C., Raponi, A., Ammannito, E., et al. (2016) Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 536, 5457.Google Scholar
Delbo, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. (2017) Identification of a primordial asteroid family constrains the original planetesimal population. Science, 357, 1026.Google Scholar
DeMeo, F. E., & Carry, B. (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
Dermott, S. F., Christou, A. A., Li, D., Kehoe Thomas, J. J., & Robinson, J. M. (2018) The common origin of family and non-family asteroids. Nature Astronomy, 2, 549554.Google Scholar
Desch, S. J., Kalyaan, A., & Alexander, C. M. O. (2018) The effect of Jupiter’s formation on the distribution of refractory elements and inclusions in meteorites. Astrophysics Journal Supplementary Series, 238, 11.CrossRefGoogle Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.CrossRefGoogle ScholarPubMed
Dwarkadas, V. V., Dauphas, N., Meyer, B., Boyajian, P., & Bojazi, M. (2017) Triggered star formation inside the shell of a Wolf–Rayet bubble as the origin of the Solar System. Astrophysics Journal, 851, 147.Google Scholar
Elkins-Tanton, L. T. (2012) Magma oceans in the inner Solar System. Annual Review of Earth and Planetary Sciences, 40, 113139.Google Scholar
Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S., & Kleine, T. (2015) Ru isotope heterogeneity in the solar protoplanetary disk. Geochimica et Cosmochimica Acta, 168, 151171.Google Scholar
Formisano, M., Federico, C., Turrini, D., et al. (2013) The heating history of Vesta and the onset of differentiation. Meteoritics & Planetary Science, 48, 23162332.Google Scholar
Goldstein, J. I., Scott, E. R. D., & Chabot, N. L. (2009) Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Geochemistry, 69, 293325.Google Scholar
Gradie, J., & Tedesco, E. (1982) Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Greenwood, R. C., Burbine, T. H., & Franchi, I. A. (2020) Linking asteroids and meteorites to the primordial planetesimal population. Geochimica et Cosmochimica Acta, 277, 377406.Google Scholar
Heck, P. R., Greer, J., Kööp, L., et al. (2020) Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide. Proceedings of the National Academy of Sciences (USA), 117, 1884.Google Scholar
Hellmann, J. L., Kruijer, T. S., Orman, J. A. V., Metzler, K., & Kleine, T. (2019) Hf–W chronology of ordinary chondrites. Geochimica et Cosmochimica Acta, 258, 290309.Google Scholar
Henke, S., Gail, H.-P., Trieloff, M., Schwarz, W. H., & Kleine, T. (2012) Thermal history modelling of the H chondrite parent body. Astronomy & Astrophysics, 545, A135.Google Scholar
Hevey, P. J., & Sanders, I. S. (2006) A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
Hilton, C. D., Bermingham, K. R., Walker, R. J., & McCoy, T. J. (2019) Genetics, crystallization sequence, and age of the South Byron Trio iron meteorites: New insights to carbonaceous chondrite (CC) type parent bodies. Geochimica et Cosmochimica Acta, 251, 217228.Google Scholar
Hogerheijde, M. R. (2011) Protoplanetary disk. In Gargaud, M., Amils, R., Quintanilla, J. C., et al. (eds.), Encyclopedia of Astrobiology. Berlin: Springer, pp. 13571366.Google Scholar
Humayun, M., & Clayton, R. N. (1995) Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochimica et Cosmochimica Acta, 59, 21312148.Google Scholar
Huss, G. R., & McSween, J. H Y. (eds.) (2010) Presolar grains: A record of stellar nucleosynthesis and processes in interstellar space. In Cosmochemistry Cambridge: Cambridge University Press, pp. 120156.Google Scholar
International Union of Pure and Applied Chemistry (2006) IUPAC Compendium of Chemical Terminology: The Gold Book. Research Triangle Park, NC: International Union of Pure and Applied Chemistry.Google Scholar
Ireland, T. R., Avila, J., Greenwood, R. C., Hicks, L. J., & Bridges, J. C. (2020) Oxygen isotopes and sampling of the Solar System. Space Science Reviews, 216, 25.Google Scholar
Jacquet, E., Pignatale, F. C., Chaussidon, M., & Charnoz, S. (2019) Fingerprints of the protosolar cloud collapse in the Solar System. II. Nucleosynthetic anomalies in meteorites. Astrophysics Journal, 884, 32.CrossRefGoogle Scholar
Jaumann, R., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687.CrossRefGoogle ScholarPubMed
Jogo, K., Nakamura, T., Ito, M., et al. (2017) Mn–Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica et Cosmochimica Acta, 199, 5874.Google Scholar
Kita, N. T., & Ushikubo, T. (2012) Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules: Disk evolution and 26Al chronology of chondrules. Meteoritics & Planetary Science, 47, 11081119.Google Scholar
Kleine, T., Budde, G., Burkhardt, C., et al. (2020) The non-carbonaceous–carbonaceous meteorite dichotomy. Space Science Reviews, 216, 55.Google Scholar
Kleine, T., Hans, U., Irving, A. J., & Bourdon, B. (2012) Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009) Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Kleine, T., & Wadhwa, M. (2017) Chronology of planetesimal differentiation. In Elkins-Tanton, L. T., & Weiss, B. P. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 224245.Google Scholar
Kleine, T., & Walker, R. J. (2017) Tungsten isotopes in planets. Annual Review of Earth and Planetary Sciences, 45, 389417.Google Scholar
Konopliv, A. S., Park, R. S., Vaughan, A. T., et al. (2018) The Ceres gravity field, spin pole, rotation period and orbit from the Dawn radiometric tracking and optical data. Icarus, 299, 411429.Google Scholar
Krot, A. N., Amelin, Y., Bland, P., et al. (2009) Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta, 73, 49634997.Google Scholar
Krot, A. N., Keil, K., Scott, E. R. D., Goodrich, C. A., & Weisberg, M. K. (2014) Classification of meteorites and their genetic relationships. In Holland, H. D., & Turekian, K. K. (eds.), Treatise on Geochemistry. Amsterdam: Elsevier, pp. 163.Google Scholar
Krot, A. N., Makide, K., Nagashima, K., et al. (2012) Heterogeneous distribution of 26Al at the birth of the Solar System: Evidence from refractory grains and inclusions: 26Al heterogeneity in the early Solar System. Meteoritics & Planetary Science, 47, 19481979.Google Scholar
Krot, A. N., Nagashima, K., Libourel, G., & Miller, K. E. (2018) Multiple mechanisms of transient heating events in the protoplanetary disk: Evidence from precursors of chondrules and igneous Ca, Al-rich inclusions. In Krot, A. N., Connolly, H. C. Jr., & Russell, S. S. (eds.), Chondrules: Records of Protoplanetary Disk Processes. Cambridge: Cambridge University Press, pp. 1156.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, G., & Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences (USA), 114, 67126716.Google Scholar
Kruijer, T. S., & Kleine, T. (2019) Age and origin of IIE iron meteorites inferred from Hf-W chronology. Geochimica et Cosmochima Acta, 262, 92103.Google Scholar
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020) The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4, 3240.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. (2014) Protracted core formation and rapid accretion of protoplanets. Science, 344, 1150.Google Scholar
Lambrechts, M., & Johansen, A. (2012) Rapid growth of gas-giant cores by pebble accretion. Astronomy & Astrophysics, 544, A32.Google Scholar
Lee, T., Papanastassiou, D. A., & Wasserburg, G. J. (1977) Aluminum-26 in the early Solar System: Fossil or fuel? Astrophysics Journal, 211, L107L110.Google Scholar
Lewis, R. S., Ming, T., Wacker, J. F., Anders, E., & Steel, E. (1987) Interstellar diamonds in meteorites. Nature, 326, 160162.Google Scholar
Leya, I., Schönbächler, M., Wiechert, U., Krähenbühl, U., & Halliday, A. N. (2008) Titanium isotopes and the radial heterogeneity of the Solar System. Earth and Planetary Science Letters, 266, 233244.Google Scholar
Lodders, K. (2003) Solar System abundances and condensation temperatures of the elements. Astrophysics Journal, 591, 12201247.Google Scholar
Lodders, K., & Amari, S. (2005) Presolar grains from meteorites: Remnants from the early times of the Solar System. Chemie der Erde – Geochemistry, 65, 93166.Google Scholar
Lovering, J. F. (1957) Differentiation in the iron-nickel core of a parent meteorite body. Geochimica et Cosmochimica Acta, 12, 238252.Google Scholar
Lunning, N. G., Corrigan, C. M., McSween, H. Y., et al. (2016) CV and CM chondrite impact melts. Geochimica et Cosmochimica Acta, 189, 338358.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
Mayer, B., Wittig, N., Humayun, M., & Leya, I. (2015) Palladium isotopic evidence for nucleosynthetic and cosmogenic isotope anomalies in IVB iron meteorites. Astrophysics Journal, 809, 180.Google Scholar
McCord, T. B., Li, J.-Y., Combe, J.-P., et al. (2012) Dark material on Vesta from the infall of carbonaceous volatile-rich material. Nature, 491, 8386.Google Scholar
Morbidelli, A., Bitsch, B., Crida, A., et al. (2016) Fossilized condensation lines in the Solar System protoplanetary disk. Icarus, 267, 368376.Google Scholar
Nagashima, K., Krot, A. N., & Komatsu, M. (2017) 26Al–26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 303319.Google Scholar
Nanne, J. A. M., Nimmo, F., Cuzzi, J. N., & Kleine, T. (2019) Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth and Planetary Science Letters, 511, 4454.CrossRefGoogle Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Niemeyer, S. (1988) Titanium isotopic anomalies in chondrules from carbonaceous chondrites. Geochimica et Cosmochimica Acta, 52, 309318.Google Scholar
Ott, U. (2014) Planetary and pre-solar noble gases in meteorites. Geochemistry, 74, 519544.Google Scholar
Papanastassiou, D. A. (1986) Chromium isotopic anomalies in the Allende meteorite Astrophysics Journal, 308, L27L30.Google Scholar
Pape, J., Mezger, K., Bouvier, A.-S., & Baumgartner, L. P. (2019) Time and duration of chondrule formation: Constraints from 26Al–26Mg ages of individual chondrules. Geochimica et Cosmochimica Acta, 244, 416436.Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 6285.Google Scholar
Poole, G. M., Rehkämper, M., Coles, B. J., Goldberg, T., & Smith, C. L. (2017) Nucleosynthetic molybdenum isotope anomalies in iron meteorites – new evidence for thermal processing of solar nebula material. Earth and Planetary Science Letters, 473, 215226.Google Scholar
Prettyman, T. H., Mittlefehldt, D. W., Yamashita, N., et al. (2012) Elemental mapping by Dawn reveals exogenic H in Vesta’s regolith. Science, 338, 242.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 55.Google Scholar
Qin, L., & Carlson, R. W. (2016) Nucleosynthetic isotope anomalies and their cosmochemical significance. Geochemical Journal, 50, 4365.Google Scholar
Raymond, S. N., & Izidoro, A. (2017a) The empty primordial asteroid belt. Science Advances, 3, e1701138.Google Scholar
Raymond, S. N., & Izidoro, A. (2017b) Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297, 134148.Google Scholar
Reddy, V., Corre, L. L., O’Brien, D. P., et al. (2012) Delivery of dark material to Vesta via carbonaceous chondritic impacts. Icarus, 221, 544559.Google Scholar
Regelous, M., Elliott, T., & Coath, C. D. (2008) Nickel isotope heterogeneity in the early Solar System. Earth and Planetary Science Letters, 272, 330338.Google Scholar
Righter, K. (2007) Not so rare Earth? New developments in understanding the origin of the Earth and Moon. Geochemistry, 67, 179200.Google Scholar
Rotaru, M., Birck, J. L., & Allègre, C. J. (1992) Clues to early Solar System history from chromium isotopes in carbonaceous chondrites. Nature, 358, 465470.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 1008.CrossRefGoogle ScholarPubMed
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684.Google Scholar
Sarafian, A. R., Hauri, E. H., McCubbin, F. M., et al. (2017a) Early accretion of water and volatile elements to the inner Solar System: Evidence from angrites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375, 20160209.Google Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., et al. (2017b) Angrite meteorites record the onset and flux of water to the inner Solar System. Geochimica et Cosmochimica Acta, 212, 156166.Google Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., et al. (2019) The water and fluorine content of 4 Vesta. Geochimica et Cosmochimica Acta, 266, 568581.Google Scholar
Sarafian, A. R., Nielsen, S. G., Marschall, H. R., McCubbin, F. M., & Monteleone, B. D. (2014) Early accretion of water in the inner Solar System from a carbonaceous chondrite-like source. Science, 346, 623626.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vesta’s south pole. Science, 336, 694.Google Scholar
Schiller, M., Bizzarro, M., & Fernandes, V. A. (2018) Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature, 555, 507510.Google Scholar
Schiller, M., Paton, C., & Bizzarro, M. (2015) Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events. Geochimica et Cosmochimica Acta, 149, 88102.Google Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017) Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochimica et Cosmochimica Acta, 201, 275302.Google Scholar
Scott, E. R. D. (1972) Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta, 36, 12051236.Google Scholar
Scott, E. R. D. (1977) Formation of olivine-metal textures in pallasite meteorites. Geochimica et Cosmochimica Acta, 41, 693710.Google Scholar
Scott, E. R. D., Krot, A. N., & Sanders, I. S. (2018) Isotopic dichotomy among meteorites and its bearing on the protoplanetary disk. Astrophysics Journal, 854, 164.Google Scholar
Scott, E. R. D., & Wasson, J. T. (1976) Chemical classification of iron meteorites – VIII. Groups IC. IIE, IIIF and 97 other irons. Geochimica et Cosmochimica Acta, 40, 103115.Google Scholar
Shu, F. H., Adams, F. C., & Lizano, S. (1987) Star formation in molecular clouds: Observation and theory. Annual Review of Astronomy & Astrophysics, 25, 2381.Google Scholar
Spitzer, F., Burkhardt, C., Budde, G., et al. (2020) Isotopic evolution of the inner Solar System inferred from molybdenum isotopes in meteorites. Astrophysics Journal, 898, L2.Google Scholar
Spitzer, F., Burkhardt, C., Pape, J., & Kleine, T. (in press) Collisional mixing between inner and outer solar system planetesimals inferred from the Nedagolla iron meteorite. Meteoritics & Planetary Science.Google Scholar
Sugiura, N., & Fujiya, W. (2014) Correlated accretion ages and ε 54 Cr of meteorite parent bodies and the evolution of the solar nebula. Meteoritics & Planetary Science, 49, 772787.Google Scholar
Tang, H., & Dauphas, N. (2012) Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth and Planetary Science Letters, 359–360, 248263.Google Scholar
Taylor, G. J., Keil, K., McCoy, T., Haack, H., & Scott, E. R. D. (1993) Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics, 28, 3452.Google Scholar
Tornabene, H. A., Hilton, C. D., Bermingham, K. R., Ash, R. D., & Walker, R. J. (2020) Genetics, age and crystallization history of group IIC iron meteorites. Geochimica et Cosmochimica Acta, 288, 3650.Google Scholar
Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B., & Kleine, T. (2015) Hf–W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trinquier, A., Birck, J., & Allegre, C. J. (2007) Widespread 54Cr heterogeneity in the inner Solar System. Astrophysics Journal, 655, 11791185.Google Scholar
Trinquier, A., Birck, J.-L., Allègre, C. J., Göpel, C., & Ulfbeck, D. (2008) 53Mn–53Cr systematics of the early Solar System revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009) Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.Google Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016) Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proceedings of the National Academy of Sciences (USA), 113, 20112016.Google Scholar
Vernazza, P., & Beck, P. (2017) Composition of Solar System small bodies. In Weiss, B. P., & Elkins-Tanton, L. T. (eds.), Planetesimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 269297.Google Scholar
Villeneuve, J., Chaussidon, M., & Libourel, G. (2009) Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.Google Scholar
Vockenhuber, C., Oberli, F., Bichler, M., et al. (2004) New half-life measurement of 182Hf: Improved chronometer for the early Solar System. Physical Review Letters, 93, 172501.Google Scholar
Walker, R. J., Bermingham, K., Liu, J., et al. (2015) In search of late-stage planetary building blocks. Chemical Geology, 411, 125142.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Walte, N. P., Solferino, G. F. D., Golabek, G. J., Souza, D. S., & Bouvier, A. (2020) Two-stage formation of pallasites and the evolution of their parent bodies revealed by deformation experiments. Earth and Planetary Science Letters, 546, 116419.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Wasson, J. T., & Kallemeyn, G. W. (2002) The IAB iron-meteorite complex: A group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta, 66, 24452473.Google Scholar
Weber, P., Benítez-Llambay, P., Gressel, O., Krapp, L., & Pessah, M. E. (2018) Characterizing the variable dust permeability of planet-induced gaps. Astrophysics Journal, 854, 153.Google Scholar
Weidenschilling, S. J. (1977) Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180, 5770.Google Scholar
Worsham, E. A., Bermingham, K. R., & Walker, R. J. (2017) Characterizing cosmochemical materials with genetic affinities to the Earth: Genetic and chronological diversity within the IAB iron meteorite complex. Earth and Planetary Science Letters, 467, 157166.Google Scholar
Worsham, E. A., Bermingham, K. R., & Walker, R. J. (2016) Siderophile element systematics of IAB complex iron meteorites: New insights into the formation of an enigmatic group. Geochimica et Cosmochimica Acta, 188, 261283.Google Scholar
Worsham, E. A., Burkhardt, C., Budde, G., et al. (2019) Distinct evolution of the carbonaceous and non-carbonaceous reservoirs: Insights from Ru, Mo, and W isotopes. Earth and Planetary Science Letters, 521, 103112.Google Scholar
Yang, J., Goldstein, J. I., & Scott, E. R. D. (2007) Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar
Yang, J., Goldstein, J. I., & Scott, E. R. D. (2010) Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.Google Scholar
Yang, L., & Ciesla, F. J. (2012) The effects of disk building on the distributions of refractory materials in the solar nebula. Meteoritics & Planetary Science, 47, 99119.Google Scholar
Yokoyama, T., Nagai, Y., Fukai, R., & Hirata, T. (2019) Origin and evolution of distinct molybdenum isotopic variabilities within carbonaceous and noncarbonaceous reservoirs. Astrophysics Journal, 883, 62.Google Scholar
Young, E. D. (2014) Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the Solar System. Earth and Planetary Science Letters, 392, 1627.Google Scholar
Zinner, E. (2014) Presolar grains. In Davis, A. M. (ed.), Treatise on Geochemistry. Amsterdam: Elsevier, pp. 181213.Google Scholar
Zinner, E., Ming, T., & Anders, E. (1987) Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite. Nature, 330, 730732.Google Scholar

References

Abod, C. P., Simon, J. B., Li, R., et al. (2019) The mass and size distribution of planetesimals formed by the streaming instability. II. The effect of the radial gas pressure gradient. The Astrophysical Journal, 883, 192.Google Scholar
Adachi, I., Hayashi, C., & Nakazawa, K. (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Progress in Theoretical Physics, 56, 17561771.Google Scholar
Agnor, C. B., & Lin, D. N. C. (2012) On the migration of Jupiter and Saturn: Constraints from linear models of secular resonant coupling with the terrestrial planets. The Astrophysical Journal, 745, 143.Google Scholar
Alexander, C. M. O., McKeegan, K. D., & Altwegg, K. (2018) Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214, 36.Google Scholar
ALMA Partnership, Brogan, C. L., Pérez, L. M., et al. (2015) The 2014 ALMA long baseline campaign: First results from high angular resolution observations toward the HL tau region. The Astrophysical Journal, 808, L3.Google Scholar
Andrews, S. M., Huang, J., Pérez, L. M., et al. (2018) The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, sample, calibration, and overview. The Astrophysical Journal, 869, L41.Google Scholar
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. (2009) Protoplanetary disk structures in ophiuchus. The Astrophysical Journal, 700, 15021523.Google Scholar
Andrews, S. M., Wilner, D. J., Zhu, Z., et al. (2016) Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. The Astrophysical Journal, 820, L40.Google Scholar
Baruteau, C., Crida, A., Paardekooper, S.-J., et al. (2014) Planet–disk interactions and early evolution of planetary systems. In Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. K. (eds.), Protostars and Planets VI. Tucson: University of Arizona Press, pp. 667689.Google Scholar
Batygin, K. (2012) A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature, 491, 418420.Google Scholar
Birnstiel, T., Fang, M., & Johansen, A. (2016) Dust evolution and the formation of planetesimals. Space Science Reviews, 205, 41–75.Google Scholar
Bitsch, B., Johansen, A., Lambrechts, M., & Morbidelli, A. (2015) The structure of protoplanetary discs around evolving young stars. Astronomy & Astrophysics, 575, A28.Google Scholar
Bitsch, B., Morbidelli, A., Johansen, A., et al. (2018) Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants. Astronomy & Astrophysics, 612, A30.Google Scholar
Bland, M. T., Raymond, C. A., Schenk, P. M., et al. (2016) Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geoscience, 9, 538542.Google Scholar
Boehnke, P., & Harrison, T. M. (2016) Illusory late heavy bombardments. Proceedings of the National Academy of Sciences (USA), 113, 1080210806.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. (2005) The fossilized size distribution of the main asteroid belt. Icarus, 175, 111140.Google Scholar
Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A., & O’Brien, D. P. (2006) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Bottke, W. F., & Norman, M. D. (2017) The late heavy bombardment. Annual Review of Earth and Planetary Sciences, 45, 619647.Google Scholar
Bottke, W. F., Vokrouhlický, D., Broz, M., Nesvorný, D., & Morbidelli, A. (2001) Dynamical spreading of asteroid families by the Yarkovsky effect. Science, 294, 16931696.Google Scholar
Bottke, W. F., Vokrouhlický, D., Marchi, S., et al. (2015) Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321323.Google Scholar
Bottke, W. F., Vokrouhlický, D., Minton, D., et al. (2012) An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature, 485, 7881.Google Scholar
Bouvier, A., & Wadhwa, M. (2010) The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637641.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., & Carruba, V. (2017) Scattering V-type asteroids during the giant planet instability: a step for Jupiter, a leap for basalt. Monthly Notices of the Royal Astronomical Society, 468, 12361244.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., et al. (2016) Dynamical dispersal of primordial asteroid families. Icarus, 266, 142151.Google Scholar
Brasser, R., Matsumura, S., Ida, S., Mojzsis, S. J., & Werner, S. C. (2016) Analysis of terrestrial planet formation by the Grand Tack model: System architecture and tack location. The Astrophysical Journal, 821, 75.Google Scholar
Brasser, R., & Mojzsis, S. J. (2020) The partitioning of the inner and outer Solar System by a structured protoplanetary disk. Nature Astronomy, 4, 492499.Google Scholar
Brasser, R., & Morbidelli, A. (2013) Oort cloud and scattered disc formation during a late dynamical instability in the Solar System. Icarus, 225, 4049.Google Scholar
Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K., & Levison, H. F. (2009) Constructing the secular architecture of the Solar System II: the terrestrial planets. Astronomy & Astrophysics, 507, 10531065.Google Scholar
Bromley, B. C., & Kenyon, S. J. (2017) Terrestrial planet formation: Dynamical shake-up and the low mass of Mars. The Astronomical Journal, 153, 216.Google Scholar
Bryden, G., Chen, X., Lin, D. N. C., Nelson, R. P., & Papaloizou, J. C. B. (1999) Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth. The Astrophysical Journal, 514, 344367.Google Scholar
Budde, G., Burkhardt, C., & Kleine, T. (2019) Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nature Astronomy, 3, 736741.Google Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., & Metzler, K. (2016) Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences (USA), 113, 28862891.Google Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., Gladman, B., & Keil, K. (2002) Meteoritic parent bodies: Their number and identification. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizona Press, pp. 653667.Google Scholar
Bus, S. J., & Binzel, R. P. (2002) Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus, 158, 146177.Google Scholar
Carrera, D., Gorti, U., Johansen, A., & Davies, M. B. (2017) Planetesimal formation by the streaming instability in a photoevaporating disk. The Astrophysical Journal, 839, 16.Google Scholar
Chambers, J. E. (2001) Making more terrestrial planets. Icarus, 152, 205224.Google Scholar
Chambers, J. E., & Wetherill, G. W. (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus, 136, 304327.Google Scholar
Chambers, J. E., & Wetherill, G. W. (2001) Planets in the asteroid belt. Meteoritics & Planetary Science, 36, 381399.Google Scholar
Clayton, R. N., & Mayeda, T. K. (1996) Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 19992017.Google Scholar
Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E., & Walsh, K. J. (2019a) The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 321, 778790.Google Scholar
Clement, M. S., Kaib, N. A., Raymond, S. N., & Walsh, K. J. (2018) Mars’ growth stunted by an early giant planet instability. Icarus, 311, 340356.Google Scholar
Clement, M. S., Morbidelli, A., Raymond, S. N., & Kaib, N. A. (2020) A record of the final phase of giant planet migration fossilized in the asteroid belt’s orbital structure. Monthly Notices of the Royal Astronomical Society, 492, L56L60.Google Scholar
Clement, M. S., Raymond, S. N., & Kaib, N. A. (2019b) Excitation and depletion of the asteroid belt in the early instability scenario. The Astronomical Journal, 157, 38.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651.Google Scholar
Crida, A., Masset, F., & Morbidelli, A. (2009) Long range outward migration of giant planets, with application to Fomalhaut b. The Astrophysical Journal, 705, L148L152.Google Scholar
Crida, A., Morbidelli, A., & Masset, F. (2006) On the width and shape of gaps in protoplanetary disks. Icarus, 181, 587604.Google Scholar
Dauphas, N. (2017) The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521524.Google Scholar
Dauphas, N., & Pourmand, A. (2011) Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature, 473, 489492.Google Scholar
Day, J. M. D., Pearson, D. G., & Taylor, L. A. (2007) Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science, 315, 217.Google Scholar
De Sanctis, M. C., Ammannito, E., McSween, H. Y., et al. (2017) Localized aliphatic organic material on the surface of Ceres. Science, 355, 719722.Google Scholar
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. (2015) Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature, 528, 241244.Google Scholar
Deienno, R., Gomes, R. S., Walsh, K. J., Morbidelli, A., & Nesvorný, D. (2016) Is the Grand Tack model compatible with the orbital distribution of Main Belt asteroids? Icarus, 272, 114124.Google Scholar
Deienno, R., Izidoro, A., Morbidelli, A., et al. (2018) Excitation of a primordial cold asteroid belt as an outcome of planetary instability. The Astrophysical Journal, 864, 50.Google Scholar
Deienno, R., Morbidelli, A., Gomes, R. S., & Nesvorný, D. (2017) Constraining the giant planets’ initial configuration from their evolution: Implications for the timing of the planetary instability. The Astronomical Journal, 153, 153.Google Scholar
Deienno, R., Walsh, K. J., Kretke, K. A., & Levison, H. F. (2019) Energy dissipation in large collisions – No change in planet formation outcomes. The Astrophysical Journal, 876, 103.Google Scholar
Delbo’, M., Walsh, K., Bolin, B., Avdellidou, C., & Morbidelli, A. (2017) Identification of a primordial asteroid family constrains the original planetesimal population. Science, 357, 10261029.Google Scholar
DeMeo, F. E., & Carry, B. (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus, 226, 723741.Google Scholar
DeMeo, F. E., & Carry, B. (2014) Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.Google Scholar
Dermott, S. F., Christou, A. A., Li, D., Kehoe, T. J. J., & Robinson, J. M. (2018) The common origin of family and non-family asteroids. Nature Astronomy, 2, 549554.Google Scholar
Dra̧żkowska, J., Alibert, Y., & Moore, B. (2016) Close-in planetesimal formation by pile-up of drifting pebbles. Astronomy & Astrophysics, 594, A105.Google Scholar
Dra̧żkowska, J., & Dullemond, C. P. (2018) Planetesimal formation during protoplanetary disk buildup. Astronomy & Astrophysics, 614, A62.Google Scholar
Duncan, M., Quinn, T., & Tremaine, S. (1987) The formation and extent of the Solar System comet cloud. The Astronomical Journal, 94, 13301338.Google Scholar
Emery, J. P., Marzari, F., Morbidelli, A., French, L. M., & Grav, T. (2015) The complex history of trojan asteroids. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 203220.Google Scholar
Fanale, F. P., & Salvail, J. R. (1989) The water regime of asteroid (1) Ceres. Icarus, 82, 97110.Google Scholar
Fernandez, J. A., & Ip, W. (1984) Some dynamical aspects of the accretion of Uranus and Neptune – The exchange of orbital angular momentum with planetesimals. Icarus, 58, 109120.Google Scholar
Fischer, R. A., & Ciesla, F. J. (2014) Dynamics of the terrestrial planets from a large number of N-body simulations. Earth and Planetary Science Letters, 392, 2838.Google Scholar
Fogg, M. J., & Nelson, R. P. (2005) Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. Astronomy & Astrophysics, 441, 791806.Google Scholar
Fogg, M. J., & Nelson, R. P. (2007) On the formation of terrestrial planets in hot-Jupiter systems. Astronomy & Astrophysics, 461, 11951208.Google Scholar
Franchi, I. A., Wright, I. P., Sexton, A. S., & Pillinger, C. T. (1999) The oxygen-isotopic composition of Earth and Mars. Meteoritics & Planetary Science, 34, 657661.Google Scholar
Fung, J., Shi, J.-M., & Chiang, E. (2014) How empty are disk gaps opened by giant planets? The Astrophysical Journal, 782, 88.Google Scholar
Gladman, B. (1993) Dynamics of systems of two close planets. Icarus, 106, 247.Google Scholar
Gladman, B. J., Migliorini, F., Morbidelli, A., et al. (1997) Dynamical lifetimes of objects injected into asteroid belt resonances. Science, 277, 197201.Google Scholar
Goldreich, P., & Tremaine, S. (1980) Disk-satellite interactions. The Astrophysical Journal, 241, 425441.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466469.Google Scholar
Gomes, R. S., Morbidelli, A., & Levison, H. F. (2004) Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus, 170, 492507.Google Scholar
Gradie, J., & Tedesco, E. (1982) Compositional structure of the asteroid belt. Science, 216, 14051407.Google Scholar
Greenberg, R., Hartmann, W. K., Chapman, C. R., & Wacker, J. F. (1978) Planetesimals to planets – Numerical simulation of collisional evolution. Icarus, 35, 126.Google Scholar
Grimm, R. E., & McSween, H. Y. (1993) Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653655.Google Scholar
Haghighipour, N., & Scott, E. R. D. (2012) On the effect of giant planets on the scattering of parent bodies of iron meteorite from the terrestrial planet region into the asteroid belt: A concept study. The Astrophysical Journal, 749, 113.Google Scholar
Haisch, K. E. Jr., Lada, E. A., & Lada, C. J. (2001) Disk frequencies and lifetimes in young clusters. The Astrophysical Journal, 553, L153L156.Google Scholar
Hansen, B. M. S. (2009) Formation of the terrestrial planets from a narrow annulus. The Astrophysical Journal, 703, 11311140.Google Scholar
Hartmann, W. K. (2019) The collapse of the terminal cataclysm paradigm … and where we go from here. 50th Lunar and Planetary Science Conference, March 18–22, The Woodlands, TX, p. 1064.Google Scholar
Hayashi, C. (1981) Structure of the solar Nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the Nebula. Progress of Theoretical Physics Supplement, 70, 3553.Google Scholar
Heppenheimer, T. A. (1980) Secular resonances and the origin of eccentricities of Mars and the asteroids. Icarus, 41, 7688.Google Scholar
Hubickyj, O., Bodenheimer, P., & Lissauer, J. J. (2005) Accretion of the gaseous envelope of Jupiter around a 5 10 Earth-mass core. Icarus, 179, 415431.Google Scholar
Ida, S., & Lin, D. N. C. (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. The Astrophysical Journal, 604, 388413.Google Scholar
Ida, S., & Makino, J. (1992) N-body simulation of gravitational interaction between planetesimals and a protoplanet. I – Velocity distribution of planetesimals. Icarus, 96, 107120.Google Scholar
Ida, S., & Makino, J. (1993) Scattering of planetesimals by a protoplanet – Slowing down of runaway growth. Icarus, 106, 210.Google Scholar
Ikoma, M., Emori, H., & Nakazawa, K. (2001) Formation of giant planets in dense nebulae: Critical core mass revisited. The Astrophysical Journal, 553, 9991005.Google Scholar
Ikoma, M., Nakazawa, K., & Emori, H. (2000) Formation of giant planets: Dependences on core accretion rate and grain opacity. The Astrophysical Journal, 537, 10131025.Google Scholar
Izidoro, A., Morbidelli, A., & Raymond, S. N. (2014) Terrestrial planet formation in the presence of migrating super-Earths. The Astrophysical Journal, 794, 11.Google Scholar
Izidoro, A., Morbidelli, A., Raymond, S. N., Hersant, F., & Pierens, A. (2015a) Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. Astronomy & Astrophysics, 582, A99.Google Scholar
Izidoro, A., Raymond, S. N., Morbidelli, A., & Winter, O. C. (2015b) Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. Monthly Notices of the Royal Astronomical Society, 453, 36193634.Google Scholar
Izidoro, A., Raymond, S. N., Pierens, A., et al. (2016) The asteroid belt as a relic from a chaotic early Solar System. The Astrophysical Journal, 833, 40.Google Scholar
Jacobson, S. A., & Morbidelli, A. (2014) Lunar and terrestrial planet formation in the Grand Tack scenario. Philosophical Transactions of the Royal Society of London Series A, 372, 0174.Google Scholar
Jacobson, S. A., Morbidelli, A., Raymond, S. N., et al. (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature, 508, 8487.Google Scholar
Johansen, A., Blum, J., Tanaka, H., et al. (2014) The multifaceted planetesimal formation process. In Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. K. (eds.), Protostars and Planets VI. Tucson: University of Arizona Press, pp. 547570.Google Scholar
Johansen, A., & Lambrechts, M. (2017) Forming planets via pebble accretion. Annual Review of Earth and Planetary Sciences, 45, 359387.Google Scholar
Johansen, A., Mac Low, M.-M., Lacerda, P., & Bizzarro, M. (2015) Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Science Advances, 1, 1500109.Google Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.Google Scholar
Johnson, B. C., Walsh, K. J., Minton, D. A., Krot, A. N., & Levison, H. F. (2016) Timing of the formation and migration of giant planets as constrained by cb chondrites. Science Advances, 2.Google Scholar
Kaib, N. A., & Chambers, J. E. (2016) The fragility of the terrestrial planets during a giant-planet instability. Monthly Notices of the Royal Astronomical Society, 455, 35613569.Google Scholar
Kaib, N. A., & Cowan, N. B. (2015) The feeding zones of terrestrial planets and insights into Moon formation. Icarus, 252, 161174.Google Scholar
Kerridge, J. F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites abundances and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta, 49, 17071714.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Kley, W., & Nelson, R. P. (2012) Planet–disk interaction and orbital evolution. Annual Review of Astronomy & Astrophysics, 50, 211249.Google Scholar
Knežević, Z., & Milani, A. (2003) Proper element catalogs and asteroid families. Astronomy & Astrophysics, 403, 11651173.Google Scholar
Kokubo, E., & Ida, S. (1998) Oligarchic growth of protoplanets. Icarus, 131, 171178.Google Scholar
Kokubo, E., & Ida, S. (2000) Formation of protoplanets from planetesimals in the Solar Nebula. Icarus, 143, 1527.Google Scholar
Krasinsky, G. A., Pitjeva, E. V., Vasilyev, M. V., & Yagudina, E. I. (2002) Hidden mass in the asteroid belt. Icarus, 158, 98105.Google Scholar
Kretke, K. A., Bottke, W., Kring, D. A., & Levison, H. F. (2017) Effect of giant planet formation on the compositional mixture of the asteroid belt. AAS/Division of Dynamical Astronomy Meeting #48, June 11–15, Queen Mary University of London, London, p. 103.02.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., & Meibom, A., 2005. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.Google Scholar
Kruijer, T. S., Burkhardt, C., Budde, C., & Kleine, T. (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences (USA), 114, 67126716.Google Scholar
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020) The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4, 3240.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. (2014) Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Kuchynka, P., & Folkner, W. M. (2013) A new approach to determining asteroid masses from planetary range measurements. Icarus, 222, 243253.Google Scholar
Küppers, M., O’Rourke, L., Bockelée-Morvan, D., et al. (2014) Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.Google Scholar
Lambrechts, M., & Johansen, A. (2012) Rapid growth of gas-giant cores by pebble accretion. Astronomy & Astrophysics, 544, A32.Google Scholar
Lambrechts, M., & Johansen, A. (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astronomy & Astrophysics, 572, A107.Google Scholar
Lambrechts, M., & Lega, E. (2017) Reduced gas accretion on super-Earths and ice giants. Astronomy & Astrophysics, 606, A146.Google Scholar
Lambrechts, M., Lega, E., Nelson, R. P., Crida, A., & Morbidelli, A. (2019) Quasi-static contraction during runaway gas accretion onto giant planets. Astronomy & Astrophysics, 630, A82.Google Scholar
Laskar, J., Gastineau, M., Delisle, J. B., Farrés, A., & Fienga, A. (2011) Strong chaos induced by close encounters with Ceres and Vesta. Astronomy & Astrophysics, 532, L4.Google Scholar
Lebofsky, L. A., Feierberg, M. A., Tokunaga, A. T., Larson, H. P., & Johnson, J. R. (1981) The 1.7- to 4.2-μ m spectrum of asteroid 1 Ceres: Evidence for structural water in clay minerals. Icarus, 48, 453459.Google Scholar
Lecar, M., & Franklin, F. (1997) The Solar Nebula, secular resonances, gas drag, and the asteroid belt. Icarus, 129, 134146.Google Scholar
Leinhardt, Z. M., & Richardson, D. C. (2005) Planetesimals to protoplanets. I. Effect of fragmentation on terrestrial planet formation. The Astrophysical Journal, 625, 427440.Google Scholar
Lemaitre, A., & Dubru, P. (1991) Secular resonances in the primitive solar nebula. Celestial Mechanics and Dynamical Astronomy, 52, 5778.Google Scholar
Levison, H. F., Bottke, W. F., Gounelle, M., et al. (2009) Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature, 460, 364366.Google Scholar
Levison, H. F., Kretke, K. A., & Duncan, M. J. (2015a) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature, 524, 322324.Google Scholar
Levison, H. F., Kretke, K. A., Walsh, K. J., & Bottke, W. F. (2015b) Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. Proceedings of the National Academy of Sciences (USA), 112, 1418014185.Google Scholar
Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D., & Gomes, R. (2011) Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. The Astronomical Journal, 142, 152.Google Scholar
Levison, H. F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., & Tsiganis, K. (2008) Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus, 196, 258273.Google Scholar
Levison, H. F., & Stewart, G. R. (2001) Remarks on modeling the formation of Uranus and Neptune. Icarus, 153, 224228.Google Scholar
Levison, H. F., Thommes, E., & Duncan, M. J. (2010) Modeling the formation of giant planet cores. I. Evaluating key processes. The Astronomical Journal, 139, 12971314.Google Scholar
Lichtenberg, T., Golabek, G. J., Gerya, T. V., & Meyer, M. R. (2016) The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus, 274, 350365.Google Scholar
Lin, D. N. C., & Papaloizou, J. (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III – Orbital migration of protoplanets. The Astrophysical Journal, 309, 846857.Google Scholar
Lissauer, J. J., Hubickyj, O., D’Angelo, G., & Bodenheimer, P. (2009) Models of Jupiter’s growth incorporating thermal and hydrodynamic constraints. Icarus, 199, 338350.Google Scholar
Malhotra, R. (1993) The origin of Pluto’s peculiar orbit. Nature, 365, 819821.Google Scholar
Malhotra, R. (1995) The origin of Pluto’s orbit: Implications for the Solar System beyond Neptune. The Astronomical Journal, 110, 420.Google Scholar
Mamajek, E. E. (2009) Initial conditions of planet formation: Lifetimes of primordial disks. In Usuda, T., Tamura, M., & Ishii, M. (eds.), American Institute of Physics Conference Series, Volume 1158 of American Institute of Physics Conference Series. AIP Publishing, pp. 310.Google Scholar
Mandell, A. M., Raymond, S. N., & Sigurdsson, S. (2007) Formation of Earth-like planets during and after giant planet migration. The Astrophysical Journal, 660, 823844.Google Scholar
Marchal, C., & Bozis, G. (1982) Hill stability and distance curves for the general three-body problem. Celestial Mechanics, 26, 311333.Google Scholar
Marchi, S., Bottke, W. F., Kring, D. A., & Morbidelli, A. (2012) The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth and Planetary Science Letters, 325, 2738.Google Scholar
Marchi, S., Raponi, A., Prettyman, T. H., et al. (2019) An aqueously altered carbon-rich Ceres. Nature Astronomy, 3, 140145.Google Scholar
Marchi, S., Walker, R. J., & Canup, R. M. (2020) A compositionally heterogeneous martian mantle due to late accretion. Science Advances, 6, eaay2338.Google Scholar
Marty, B. (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 5666.Google Scholar
Marty, B., & Yokochi, R. (2006) Water in the early Earth. Reviews in Mineralogy and Geophysics, 62, 421450.Google Scholar
Masset, F., & Snellgrove, M. (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. Monthly Notices of the Royal Astronomical Society, 320, L55L59.Google Scholar
Mastrobuono-Battisti, A., & Perets, H. B. (2017) The composition of Solar System asteroids and Earth/Mars moons, and the Earth–Moon composition similarity. Monthly Notices of the Royal Astronomical Society, 469, 35973609.Google Scholar
McCord, T. B., & Sotin, C. (2005) Ceres: Evolution and current state. Journal of Geophysical Research (Planets), 110, E05009.Google Scholar
McKinnon, W. B. (2008) Could Ceres be a refugee from the Kuiper Belt? Asteroids, Comets, Meteors 2008, July 14–18, Baltimore, MD, Vol. 1405, 8389.Google Scholar
McSween, H. Y., Emery, J. P., Rivkin, A. S., et al. (2018) Carbonaceous chondrites as analogs for the composition and alteration of Ceres. Meteoritics & Planetary Science, 53, 17931804.Google Scholar
Meech, K., & Raymond, S. N. (2020) Origin of Earth’s water: Sources and constraints. In Meadows, V., Arney, G., Marais, D. D., & Schmidt, B. (eds.), Planetary Astrobiology. Tucson: University of Arizona Press.Google Scholar
Milani, A., & Knezevic, Z. (1990) Secular perturbation theory and computation of asteroid proper elements. Celestial Mechanics and Dynamical Astronomy, 49, 347411.Google Scholar
Milliken, R. E., & Rivkin, A. S. (2009) Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nature Geoscience, 2, 258261.Google Scholar
Minton, D. A., & Malhotra, R. (2009) A record of planet migration in the main asteroid belt. Nature, 457, 11091111.Google Scholar
Minton, D. A., & Malhotra, R. (2011) Secular resonance sweeping of the main asteroid belt during planet migration. The Astrophysical Journal, 732, 53.Google Scholar
Mizuno, H. (1980) Formation of the giant planets. Progress of Theoretical Physics, 64, 544557.Google Scholar
Mojzsis, S. J., Brasser, R., Kelly, N. M., Abramov, O., & Werner, S. C. (2019) Onset of giant planet migration before 4480 million years ago. The Astrophysical Journal, 881, 44.Google Scholar
Monteux, J., Golabek, G. J., Rubie, D. C., Tobie, G., & Young, E. D. (2018) Water and the interior structure of terrestrial planets and icy bodies. Space Science Reviews, 214, 39.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. (2009) Asteroids were born big. Icarus, 204, 558573.Google Scholar
Morbidelli, A., Brasser, R., Gomes, R., Levison, H. F., & Tsiganis, K. (2010) Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. The Astronomical Journal, 140, 13911401.Google Scholar
Morbidelli, A., & Crida, A. (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus, 191, 158171.Google Scholar
Morbidelli, A., & Henrard, J. (1991) The main secular resonances ν6, vs and ν16 in the asteroid belt. Celestial Mechanics and Dynamical Astronomy, 51, 169197.Google Scholar
Morbidelli, A., Levison, H. F., Tsiganis, K., & Gomes, R. (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature, 435, 462465.Google Scholar
Morbidelli, A., Lunine, J. I., O’Brien, D. P., Raymond, S. N., & Walsh, K. J. (2012a) Building terrestrial planets. Annual Review of Earth and Planetary Sciences, 40, 251275.Google Scholar
Morbidelli, A., Marchi, S., Bottke, W. F., & Kring, D. A. (2012b) A sawtooth-like timeline for the first billion years of lunar bombardment. Earth and Planetary Science Letters, 355, 144151.Google Scholar
Morbidelli, A., Nesvorny, D., Laurenz, V., et al. (2018) The timeline of the lunar bombardment: Revisited. Icarus, 305, 262276.Google Scholar
Morbidelli, A., & Raymond, S. N. (2016) Challenges in planet formation. Journal of Geophysical Research (Planets), 121, 19621980.Google Scholar
Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F., & Gomes, R. (2007) Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. The Astronomical Journal, 134, 17901798.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., & Bottke, W. F. (2015) The dynamical evolution of the asteroid belt. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 493507.Google Scholar
Nagasawa, M., Ida, S., & Tanaka, H. (2001) Origin of high orbital eccentricity and inclination of asteroids. Earth, Planets, and Space, 53, 10851091.Google Scholar
Nagasawa, M., Ida, S., & Tanaka, H. (2002) Excitation of orbital inclinations of asteroids during depletion of a protoplanetary disk: Dependence on the disk configuration. Icarus, 159, 322327.Google Scholar
Nagasawa, M., Lin, D. N. C., & Thommes, E. (2005) Dynamical shake-up of planetary systems. I. Embryo trapping and induced collisions by the sweeping secular resonance and embryo-disk tidal interaction. The Astrophysical Journal, 635, 578598.Google Scholar
Nagasawa, M., Tanaka, H., & Ida, S. (2000) Orbital evolution of asteroids during depletion of the Solar Nebula. The Astronomical Journal, 119, 14801497.Google Scholar
Nathues, A., Hoffmann, M., Schaefer, M., et al. (2015) Sublimation in bright spots on (1) Ceres. Nature, 528, 237240.Google Scholar
Nesvorný, D. (2011) Young Solar System’s fifth giant planet? The Astrophysical Journal, 742, L22.Google Scholar
Nesvorný, D. (2015) Evidence for slow migration of Neptune from the inclination distribution of Kuiper Belt objects. The Astronomical Journal, 150, 73.Google Scholar
Nesvorný, D. (2018) Dynamical evolution of the early Solar System. Annual Review of Astronomy & Astrophysics, 56, 137174.Google Scholar
Nesvorný, D., Brož, M., & Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Michel, P., DeMeo, F. E., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 297321.Google Scholar
Nesvorný, D., Li, R., Youdin, A. N., Simon, J. B., & Grundy, W. M. (2019) Trans-Neptunian binaries as evidence for planetesimal formation by the streaming instability. Nature Astronomy, 3, 808812.Google Scholar
Nesvorný, D., & Morbidelli, A. (2012) Statistical study of the early Solar System’s instability with four, five, and six giant planets. The Astronomical Journal, 144, 117.Google Scholar
Nesvorný, D., Roig, F., & Bottke, W. F. (2017) Modeling the historical flux of planetary impactors. The Astronomical Journal, 153, 103.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018) Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nature Astronomy, 2, 878882.Google Scholar
Nesvorný, D., Vokrouhlický, D., & Morbidelli, A. (2013) Capture of Trojans by jumping Jupiter. The Astrophysical Journal, 768, 45.Google Scholar
Nimmo, F., & Kleine, T. (2007) How rapidly did Mars accrete? Uncertainties in the Hf W timing of core formation. Icarus, 191, 497504.Google Scholar
Nittler, L. R., & Ciesla, F. (2016) Astrophysics with extraterrestrial materials. Annual Review of Astronomy & Astrophysics, 54, 5393.Google Scholar
Novaković, B., Cellino, A., & Knežević, Z. (2011) Families among high-inclination asteroids. Icarus, 216, 6981.Google Scholar
O’Brien, D. P., Morbidelli, A., & Bottke, W. F. (2007) The primordial excitation and clearing of the asteroid belt – Revisited. Icarus, 191, 434452.Google Scholar
O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N., & Mandell, A. M. (2014) Water delivery and giant impacts in the Grand Tack scenario. Icarus, 239, 7484.Google Scholar
Ormel, C. W., & Klahr, H. H. (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astronomy & Astrophysics, 520, A43.Google Scholar
Papaloizou, J. C. B., & Larwood, J. D. (2000) On the orbital evolution and growth of protoplanets embedded in a gaseous disc. Monthly Notices of the Royal Astronomical Society, 315, 823833.Google Scholar
Petit, J., Morbidelli, A., & Chambers, J. (2001) The primordial excitation and clearing of the asteroid belt. Icarus, 153, 338347.Google Scholar
Pfalzner, S., Steinhausen, M., & Menten, K. (2014) Short dissipation times of proto-planetary disks: An artifact of selection effects? The Astrophysical Journal, 793, L34.Google Scholar
Pierens, A., & Nelson, R. P. (2008) Constraints on resonant-trapping for two planets embedded in a protoplanetary disc. Astronomy & Astrophysics, 482, 333340.Google Scholar
Pierens, A., & Raymond, S. N. (2011) Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. Astronomy & Astrophysics, 533, A131.Google Scholar
Pierens, A., Raymond, S. N., Nesvorny, D., & Morbidelli, A. (2014) Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: Implications for the Grand Tack and Nice models. The Astrophysical Journal, 795, L11.Google Scholar
Pirani, S., Johansen, A., Bitsch, B., Mustill, A. J., & Turrini, D. (2019a) Consequences of planetary migration on the minor bodies of the early Solar System. Astronomy & Astrophysics, 623, A169.Google Scholar
Pirani, S., Johansen, A., & Mustill, A. J. (2019b) On the inclinations of the Jupiter Trojans. Astronomy & Astrophysics, 631, A89.Google Scholar
Piso, A.-M. A., & Youdin, A. N. (2014) On the minimum core mass for giant planet formation at wide separations. The Astrophysical Journal, 786, 21.Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus, 124, 6285.Google Scholar
Pravec, P., Harris, A. W., Kušnirák, P., Galád, A., & Hornoch, K. (2012) Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. Icarus, 221, 365387.Google Scholar
Prettyman, T. H., Yamashita, N., Toplis, M. J., et al. (2017) Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 355, 5559.Google Scholar
Quarles, B., & Kaib, N. (2019) Instabilities in the early Solar System due to a self-gravitating disk. The Astronomical Journal, 157, 67.Google Scholar
Rafikov, R. R. (2003) The growth of planetary embryos: Orderly, runaway, or oligarchic? The Astronomical Journal, 125, 942961.Google Scholar
Raymond, S. N., & Izidoro, A. (2017a) Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus, 297, 134148.Google Scholar
Raymond, S. N., & Izidoro, A. (2017b) The empty primordial asteroid belt. Science Advances, 3, e1701138.Google Scholar
Raymond, S. N., Izidoro, A., Bitsch, B., & Jacobson, S. A. (2016) Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disc? Monthly Notices of the Royal Astronomical Society, 458, 29622972.Google Scholar
Raymond, S. N., Izidoro, A., & Morbidelli, A. (2020) Solar System formation in the context of extra-solar planets. In Meadows, V., Arney, G., Marais, D. D., & Schmidt, B. (eds.), Planetary Astrobiology. Tucson: University of Arizona Press.Google Scholar
Raymond, S. N., Kokubo, E., Morbidelli, A., Morishima, R., & Walsh, K. J. (2014) Terrestrial planet formation at home and abroad. In Beuther, H., Klessen, R. S., Dullemond, C. P., & Henning, T. K. (eds.), Protostars and Planets VI. Tucson: University of Arizona Press, pp. 595618.Google Scholar
Raymond, S. N., Mandell, A. M., & Sigurdsson, S. (2006a) Exotic Earths: Forming habitable worlds with giant planet migration. Science, 313, 14131416.Google Scholar
Raymond, S. N., & Morbidelli, A. (2014) The Grand Tack model: A critical review. In Complex Planetary Systems, Proceedings of the International Astronomical Union, Volume 310 of IAU Symposium. Cambridge: Cambridge University Press, pp. 194203.Google Scholar
Raymond, S. N., O’Brien, D. P., Morbidelli, A., & Kaib, N. A. (2009) Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus, 203, 644662.Google Scholar
Raymond, S. N., Quinn, T., & Lunine, J. I. (2006b) High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus, 183, 265282.Google Scholar
Ribeiro de Sousa, R., Morbidelli, A., Raymond, S. N., et al. (2020) Dynamical evidence for an early giant planet instability. Icarus, 339, 113605.Google Scholar
Robert, F., Merlivat, L., & Javoy, M. (1977) Water and deuterium content in eight condrites. Meteoritics, 12, 349.Google Scholar
Roig, F., & Nesvorný, D. (2015) The evolution of asteroids in the jumping-Jupiter migration model. The Astronomical Journal, 150, 186.CrossRefGoogle Scholar
Roig, F., Nesvorný, D., & DeSouza, S. R. (2016) Jumping Jupiter can explain Mercury’s orbit. The Astrophysical Journal, 820, L30.Google Scholar
Ronnet, T., Mousis, O., Vernazza, P., Lunine, J. I., & Crida, A. (2018) Saturn’s formation and early evolution at the origin of Jupiter’s massive moons. The Astronomical Journal, 155, 224.Google Scholar
Rubie, D. C., Laurenz, V., Jacobson, S. A., et al. (2016) Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science, 353, 11411144.Google Scholar
Russell, C. T., Raymond, C. A., Ammannito, E., et al. (2016) Dawn arrives at Ceres: Exploration of a small, volatile-rich world. Science, 353, 10081010.Google Scholar
Safronov, V. S. (1969) Evoliutsiia doplanetnogo oblaka.Google Scholar
Schäfer, U., Yang, C.-C., & Johansen, A. (2017) Initial mass function of planetesimals formed by the streaming instability. Astronomy & Astrophysics, 597, A69.Google Scholar
Schiller, M., Bizzarro, M., & Fernandes, V. A. (2018) Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature, 555, 507510.CrossRefGoogle ScholarPubMed
Schiller, M., Bizzarro, M., & Siebert, J. (2020) Iron isotope evidence for very rapid accretion and differentiation of the proto-earth. Science Advances, 6, eaay7604.Google Scholar
Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T., & Bizzarro, M. (2015) Early accretion of protoplanets inferred from a reduced inner Solar System 26Al inventory. Earth and Planetary Science Letters, 420, 4554.Google Scholar
Scott, E. R. D. (2002) Meteorite evidence for the accretion and collisional evolution of asteroids. In Bottke, W. F. Jr., Cellino, A., Paolicchi, P., & Binzel, R. P. (eds.), Asteroids III. Tucson: University of Arizone Press, pp. 697709.Google Scholar
Simon, J. B., Armitage, P. J., Youdin, A. N., & Li, R. (2017) Evidence for universality in the initial planetesimal mass function. The Astrophysical Journal, 847, L12.Google Scholar
Squire, J., & Hopkins, P. F. (2018) Resonant drag instabilities in protoplanetary discs: The streaming instability and new, faster growing instabilities. Monthly Notices of the Royal Astronomical Society, 477, 50115040.Google Scholar
Suzuki, D., Bennett, D. P., Sumi, T., et al. (2016) The exoplanet mass-ratio function from the MOA-II survey: Discovery of a break and likely peak at a Neptune mass. The Astrophysical Journal, 833, 145.Google Scholar
Tanaka, H., & Ida, S. (1999) Growth of a migrating protoplanet. Icarus, 139, 350366.Google Scholar
Tanaka, H., & Ward, W. R. (2004) Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. The Astrophysical Journal, 602, 388395.Google Scholar
Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. (1974) Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters, 22, 1.Google Scholar
Thommes, E., Nagasawa, M., & Lin, D. N. C. (2008) Dynamical shake-up of planetary systems. II. N-body simulations of Solar System terrestrial planet formation induced by secular resonance sweeping. The Astrophysical Journal, 676, 728739.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. (2013) Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459461.Google Scholar
Turrini, D., Coradini, A., & Magni, G. (2012) Jovian early bombardment: Planetesimal erosion in the inner asteroid belt. The Astrophysical Journal, 750, 8.Google Scholar
Turrini, D., & Svetsov, V. (2014) The formation of Jupiter, the Jovian early bombardment and the delivery of water to the asteroid belt: The case of (4) Vesta. Life, 4, 434.Google Scholar
Vernazza, P., Castillo-Rogez, J., Beck, P., et al. (2017) Different origins or different evolutions? Decoding the spectral diversity among C-type asteroids. The Astronomical Journal, 153, 72.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2016) Capture of trans-Neptunian planetesimals in the main asteroid belt. The Astronomical Journal, 152, 39.Google Scholar
Walker, R. J. (2009) Highly siderophile elements in the Earth, Moon and Mars: Update and implications for planetary accretion and differentiation. Chemie der Erde / Geochemistry, 69, 101125.Google Scholar
Walsh, K. J., & Levison, H. F. (2016) Terrestrial planet formation from an annulus. The Astronomical Journal, 152, 68.Google Scholar
Walsh, K. J., & Morbidelli, A. (2011) The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astronomy & Astrophysics, 526, A126.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2012) Populating the asteroid belt from two parent source regions due to the migration of giant planets – “The Grand Tack.” Meteoritics & Planetary Science, 47, 19411947.Google Scholar
Ward, W. R. (1981) Solar nebula dispersal and the stability of the planetary system I. Scanning secular resonance theory. Icarus, 47, 234264.Google Scholar
Ward, W. R. (1986) Density waves in the solar nebula – Differential Lindblad torque. Icarus, 67, 164180.Google Scholar
Ward, W. R. (1997) Protoplanet migration by nebula tides. Icarus, 126, 261281.Google Scholar
Warren, P. H. (2011) Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Weidenschilling, S. J. (1977a) Aerodynamics of solid bodies in the solar nebula. Monthly Notices of the Royal Astronomical Society, 180, 5770.Google Scholar
Weidenschilling, S. J. (1977b) The distribution of mass in the planetary system and solar nebula. Astrophysics & Space Science, 51, 153158.Google Scholar
Weidenschilling, S. J. (2011) Initial sizes of planetesimals and accretion of the asteroids. Icarus, 214, 671684.Google Scholar
Wetherill, G. W. (1980) Formation of the terrestrial planets. Annual Review of Astronomy & Astrophysics, 18, 77113.Google Scholar
Wetherill, G. W. (1991) Why isn’t Mars as big as Earth? In Lunar and Planetary Institute Science Conference Abstracts, Volume 22 of Lunar and Planetary Inst. Technical Report, March 18–22, Houston, TX, pp. 1495.Google Scholar
Wetherill, G. W. (1992) An alternative model for the formation of the asteroids. Icarus, 100, 307325.Google Scholar
Wetherill, G. W., & Stewart, G. R. (1989) Accumulation of a swarm of small planetesimals. Icarus, 77, 330357.Google Scholar
Wetherill, G. W. & Stewart, G. R. (1993) Formation of planetary embryos – Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus, 106, 190.Google Scholar
Williams, J. P., & Cieza, L. A. (2011) Protoplanetary disks and their evolution. Annual Review of Astronomy & Astrophysics, 49, 67117.Google Scholar
Youdin, A. N., & Goodman, J. (2005) Streaming instabilities in protoplanetary disks. The Astrophysical Journal, 620, 459469.Google Scholar
Zellner, N. E. B. (2017) Cataclysm no more: New views on the timing and delivery of lunar impactors. Origins of Life and Evolution of the Biosphere, 47, 261280.Google Scholar
Zhang, C., Miao, B., & He, H. (2019) Oxygen isotopes in HED meteorites and their constraints on parent asteroids. Planetary and Space Science, 168, 8394.CrossRefGoogle Scholar
Zhang, H., & Zhou, J.-L. (2010) On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter–Saturn configuration. The Astrophysical Journal, 714, 532548.Google Scholar

References

Ammannito, E., De Sanctis, M. E., Palomba, E., et al. (2013) Olivine in an unexpected location on Vesta’s surface. Nature, 504, 122.Google Scholar
Asphaug, E. (1997) Impact origin of the Vesta family. Meteoritics & Planetary Science, 32, 965980.Google Scholar
Asphaug, E., Collins, G., & Jutzi, M. (2015) Global scale impacts. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 661677.Google Scholar
Barboni, M., Boehnke, P., Keller, B., et al. (2017) Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.Google Scholar
Binzel, R. P., & Xu, S. (1993) Chips off of asteroid 4 Vesta – Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Blackburn, T., Alexander, C. M. O., Carlson, R., & Elkins-Tanton, L. T. (2017) The accretion and impact history of the ordinary chondrite parent bodies. Geochimica et Cosmochimica Acta, 200, 201.CrossRefGoogle Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244268.Google Scholar
Bogard, D. D. (2011) K–Ar ages of meteorites: Clues to parent body thermal histories. Chemie der Erde, 71, 207226.Google Scholar
Bogard, D. D., & Garrison, D. H. (2003) 39Ar/40Ar ages of eucrites and the thermal history of asteroid 4 Vesta. Meteoritics & Planetary Science, 38, 669710.Google Scholar
Bottke, W. F. (2014) On the origin and evolution of Vesta and the V-type asteroids. Vesta in the Light of Dawn: First Exploration of a Protoplanet in the Asteroid Belt, February 3–4, Houston, TX, 2024.Google Scholar
Bottke, W. F., Brož, M., O’Brien, D. P., et al. (2015a) The collisional evolution of the asteroid belt. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 701724.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorny, D., et al. (2005) Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus, 179, 6394.Google Scholar
Bottke, W. F., Nesvorný, D., Grimm, R. E., Morbidelli, A., & O’Brien, D. P. (2006a) Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Bottke, W. F., Nolan, M. C., Greenberg, R., & Kolvoord, R. A. (1994) Velocity distributions among colliding asteroids. Icarus, 107, 255268.CrossRefGoogle Scholar
Bottke, W. F., & Norman, M. (2017) The late heavy bombardment. Annual Review of Earth and Planetary Science, 45, 619647.Google Scholar
Bottke, W. F., Vokrouhlický, D., Ballouz, R.-L., et al. (2020) Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. The Astronomical Journal, 160, 14.Google Scholar
Bottke, W. F., Vokrouhlický, D., Marchi, S., et al. (2015b) Dating the Moon-forming impact event with asteroidal meteorites. Science, 348, 321323.Google Scholar
Bottke, W. F., Vokrouhlický, D., Rubincam, D. P., & Nesvorný, D. (2006b) The Yarkovsky and YORP effects: Implications for asteroid dynamics. Annual Review of Earth and Planetary Science, 34, 157191.CrossRefGoogle Scholar
Bowling, T. J., Johnson, B. C., Melosh, H. J., et al. (2013) Antipodal terrains created by the Rheasilvia basin forming impact on asteroid 4 Vesta. Journal of Geophysical Research: Planets, 118, 18211834.Google Scholar
Brasil, P. I. O., Roig, F., Nesvorný, D., & Carruba, V. (2017) Scattering V-type asteroids during the giant planet instability: A step for Jupiter, a leap for basalt. Monthly Notices of the Royal Astronomical Society, 468, 1236.Google Scholar
Brož, M., Morbidelli, A., Bottke, W. F., et al. (2013) Constraining the cometary flux through the asteroid belt during the late heavy bombardment. Astronomy & Astrophysics, 551, A117.Google Scholar
Buczkowski, D. L., Wyrick, D. Y., Iyer, K. A., et al. (2012) Large-scale troughs on Vesta: A signature of planetary tectonics. Geophysical Research Letters, 39, L18205.Google Scholar
Clement, M. S., Kaib, N. A., Raymond, S. N., & Walsh, K. J. (2018) Mars’ growth stunted by an early giant planet instability. Icarus, 311, 340356.Google Scholar
Clenet, H., Jutzi, M., Barrat, J.-A., et al. (2014) A deep crust-mantle boundary in the asteroid 4 Vesta. Nature, 511, 303306.Google Scholar
Consolmagno, G. J., Golabek, G. J., Turrini, D., et al. (2015) Is Vesta an intact and pristine protoplanet? Icarus, 254, 190201.Google Scholar
De Sanctis, M. C., Ammannito, E., Capria, M. T., et al. (2012) Spectroscopic characterization of mineralogy and its diversity across Vesta. Science, 336, 697700.Google Scholar
Delbo, M., Gai, M., Lattanzi, M. G., et al. (2006) MIDI observations of 1459 Magnya: First attempt of interferometric observations of asteroids with the VLTI. Icarus, 181, 618.Google Scholar
DellaGiustina, D. N., Kaplan, H. H., Simon, A. A., et al. (2021) Exogenic basalt on asteroid (101955) Bennu. Nature Astronomy, 5, 18.Google Scholar
Emsenhuber, A., Jutzi, M., & Benz, W. (2018) SPH calculations of planet-scale collisions: The role of the Equation of State, material rheologies, and numerical effects. Icarus, 301, 247257.Google Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. (2014) Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Holsapple, K. A., & Housen, K. R. (2007) A crater and its ejecta: An interpretation of deep impact. Icarus, 187, 345356.Google Scholar
Hopkins, M. D., Mojzsis, S. J., Bottke, W. F., & Abramov, O. (2015) Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 245, 367378.Google Scholar
Ivanov, B. A., & Melosh, H. J. (2013) Two-dimensional numerical modeling of the Rheasilvia impact formation. Journal of Geophysical Research: Planets, 118, 15451557.Google Scholar
Jaumann, R. J., Williams, D. A., Buczkowski, D. L., et al. (2012) Vesta’s shape and morphology. Science, 336, 687690.Google Scholar
Jourdan, F., Kennedy, T., Benedix, G. K., Eroglu, E., & Mayer, C. (2020) Timing of the magmatic activity and upper crustal cooling of differentiated asteroid 4 Vesta. Geochimica et Cosmochimica Acta, 273, 205.Google Scholar
Jutzi, M., & Asphaug, E. (2011) Mega-ejecta on asteroid Vesta. Geophysical Research Letters, 38, 1102.Google Scholar
Jutzi, M., Asphaug, E., Gillet, P., Barrat, J.-A.,n & Benz, W. (2013) The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature, 494, 207210.Google Scholar
Jutzi, M., Michel, P., & Richardson, D. C. (2019) Fragment properties from large-scale asteroid collisions: I: Results from SPH/N-body simulations using porous parent bodies and improved material models. Icarus, 317, 215228Google Scholar
Kennedy, T., Jourdan, F., Eroglu, E., & Mayers, C. (2019) Bombardment history of asteroid 4 Vesta recorded by brecciated eucrites: Large impact event clusters at 4.50 Ga and discreet bombardment until 3.47 Ga. Geochimica et Cosmochimica Acta, 260, 99.Google Scholar
Knežević, Z., & Milani, A. (2003) Proper element catalogs and asteroid families. Astronomy & Astrophysics, 403, 11651173.Google Scholar
Le Corre, L., Reddy, V., Schmedemann, N., et al. (2013) Olivine or impact melt: Nature of the “Orange” material on Vesta from Dawn. Icarus, 226, 1568.Google Scholar
Licandro, J., Popescu, M., Morate, D., & de Leon, J. (2017) V-type candidates and Vesta family asteroids in the Moving Objects VISTA (MOVIS) catalogue. Astronomy & Astrophysics, 600, A126.Google Scholar
Lindsay, F. N., Delaney, J. S., Herzog, G. F., et al. (2015) Rheasilvia provenance of the Kapoeta howardite inferred from 1 Ga 40Ar/39Ar feldspar ages. Earth and Planetary Science Letters, 413, 208.Google Scholar
Mandler, B. E., & Elkins-Tanton, L. T. (2013) The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Mansour, J.-A., Popescu, M., de Leon, J., & Licandro, J. (2020) Distribution and spectrophotometric classification of basaltic asteroids. Monthly Notices of the Royal Astronomical Society, 491, 5966.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013a) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geosciences, 6, 303307.CrossRefGoogle Scholar
Marchi, S., Bottke, W. F., O’Brien, D. P., et al. (2013b) Small crater populations on Vesta. Planetary and Space Science, 103, 96103.Google Scholar
Marchi, S., Chapman, C. R., Barnouin, O. S., Richardson, J. E., & Vincent, J.-B. (2015) Cratering on asteroids. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 725744.Google Scholar
Marchi, S., Ermakov, A. I., Raymond, C. A., et al. (2016) The missing large impact craters on Ceres. Nature Communications, 7, eid. 12257.Google Scholar
Marchi, S., McSween, H. Y., O’Brien, D. P., et al. (2012) The violent collisional history of asteroid 4 Vesta. Science, 336, 690693.Google Scholar
Masiero, J. R., DeMeo, F. E., Kasuga, T., & Parker, A. H. (2015) Asteroid family physical properties. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 323340.Google Scholar
Masiero, J. R., Mainzer, A. K., Grav, T., et al. (2012) Preliminary analysis of WISE/NEOWISE 3-band cryogenic and post-cryogenic observations of Main Belt asteroids. The Astrophysical Journal Letters, 759, 5.Google Scholar
McSween, H. J., Ammannito, E., Reddy, V., et al. (2013) Composition of the Rheasilvia basin, a window into Vesta’s interior. Journal of Geophysical Research, 118, 335346.Google Scholar
McSween, H. Y., Raymond, C. A., Stolper, E. M., et al. (2019) Differentiation and magmatic history of Vesta: Constraints from HED meteorites and Dawn spacecraft data. Chemie der Erde – Geochemistry, 79, 125526.Google Scholar
Michel, P., Benz, W., & Richardson, D. C. (2003) Disruption of fragmented parent bodies as the origin of asteroid families. Nature, 421, 608.Google Scholar
Michel, P., Benz, W. Tanga, P., & Richardson, D. C. (2001) Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science, 294, 1696.CrossRefGoogle ScholarPubMed
Mizzon, H., Monnereau, M., Toplis, M. J., et al. (2015) A numerical model of the physical and chemical evolution of Vesta based on compaction equations and the olivine-anorthite-silica ternary diagram. Lunar and Planetary Science Conference, 46, 1832.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. (2009). Asteroids were born big. Icarus, 204, 558573.Google Scholar
Morbidelli, A., Walsh, K. J., O’Brien, D. P., Minton, D. A., & Bottke, W. F. (2015) The dynamical evolution of the asteroid belt. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 493508.Google Scholar
Moskovitz, N. A., Jedicke, R., Gaidos, E., et al. (2008) The distribution of basaltic asteroids in the Main Belt. Icarus, 198, 77.CrossRefGoogle Scholar
Nesvorný, D., Brož, M., & Carruba, V. (2015) Identification and dynamical properties of asteroid families. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 297321.Google Scholar
Nesvorný, D., Roig, F., & Bottke, W. F. (2017) Modeling the historical flux of planetary impactors. The Astronomical Journal, 153, 103.Google Scholar
Nesvorný, D., Roig, F., Gladman, B., et al. (2008) Fugitives from the Vesta family. Icarus, 193, 85.Google Scholar
Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018) Evidence for very early migration of the Solar System planets from the Patroclus-Menoetius binary Jupiter Trojan. Nature Astronomy, 2, 878882.Google Scholar
Neumann, W., Breuer, D., & Spohn, T. (2014) Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Otto, K. A., Jaumann, R., Krohn, K., et al. (2016) The Coriolis effect on mass wasting during the Rheasilvia impact on asteroid Vesta. Geophysical Research Letters, 43, 1234012347.Google Scholar
Park, J., Turrin, B. D., Herzog, G. F., et al. (2015) 40Ar/39Ar age of material returned from asteroid 25143 Itokawa. Meteoritics & Planetary Science, 50, 20872098.Google Scholar
Parker, A. H., Ivezić, Ž., Jurić, M., et al. (2008) The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus, 198, 138155.Google Scholar
Raymond, C. A., Russell, C. T., & McSween, H. Y. Jr. (2017) Dawn at Vesta: Paradigms and Paradoxes. In Linda, B. P. W., & Elkins-Tanton, T. (eds.), Planetisimals: Early Differentiation and Consequences for Planets. Cambridge: Cambridge University Press, pp. 321339.Google Scholar
Raymond, S. N., & Izidoro, A. (2017) The empty primordial asteroid belt. Science Advances, 3, e1701138.Google Scholar
Renne, P. R., Balco, G., Ludwig, K. R., Mundil, R., & Min, K. (2011) Response to the comment by W. H. Schwarz et al. on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P. R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 50975100.Google Scholar
Renne, P. R., Mundil, R., Balco, G., et al. (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74, 53495367.Google Scholar
Russell, C. T., Raymond, C. A., Coradini, A., et al. (2012) Dawn at Vesta: Testing the protoplanetary paradigm. Science, 336, 684686.Google Scholar
Schenk, P., O’Brien, D. P., Marchi, S., et al. (2012) The geologically recent giant impact basins at Vestas South Pole. Science, 336, 694697.Google Scholar
Schwarz, W. H., Kossert, K., Trieloff, M., & Hopp, J. (2011) Comment on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 50945096.Google Scholar
Scott, E. R. D., and Bottke, W. F. (2011) Impact histories of angrites, eucrites, and their parent bodies. Meteoritics & Planetary Science, 46, 18781887.Google Scholar
Scott, E. R. D., Keil, K., Goldstein, J. I., et al. (2015) Early impact history and dynamical origin of differentiated meteorites and asteroids. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 573596.Google Scholar
Solontoi, M. R., Hammergren, M., Gyuk, G., Puckett, A. 2012. AVAST survey 0.4–1.0 μm spectroscopy of igneous asteroids in the inner and middle Main Belt. Icarus, 220, 577.Google Scholar
Spoto, F., Milani, A., & Knežević, Z. (2015) Asteroid family ages. Icarus, 257, 275289.Google Scholar
Steiger, R. H., & Jäger, E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359362.Google Scholar
Stickle, A. M., Schultz, P. H., and Crawford, D. A. (2015) Subsurface failure in spherical bodies: A formation scenario for linear troughs on Vesta’s surface. Icarus, 247, 1834.Google Scholar
Swindle, T. D., Kring, D. A., & Wierich, J. R. (2013) 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. In Advances in 40Ar/39Ar Dating: from Archeaology to Planetary Sciences. Geological Society of London, Special Publications, 378, 333347.Google Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502506.Google Scholar
Vernazza, P., Jorda, L., Ševeček, P., et al. (2020) A basin-free spherical shape as an outcome of a giant impact on asteroid Hygiea. Nature Astronomy, 4, 136141.Google Scholar
Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler, T. S. (2015) The Yarkovsky and YORP effects. In Michel, P., DeMeo, F., & Bottke, W. F. (eds.), Asteroids IV. Tucson: University of Arizona Press, pp. 509532.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2016) Capture of trans-Neptunian planetesimals in the main asteroid belt. The Astronomical Journal, 152, 39.Google Scholar
Vokrouhlický, D., Bottke, W. F., & Nesvorný, D. (2017) Forming the Flora family: Implications for the near-Earth asteroid population and large terrestrial planet impactors. The Astronomical Journal, 153, 172.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Yingst, R. A., Mest, S. C., Berman, D. C., et al. (2014) Geologic mapping of Vesta. Planetary and Space Science, 103, 2.Google Scholar

References

Arnold, J. R. (1965) The origin of meteorites as small bodies. III. General considerations. Astrophysical Journal, 141, 1548.Google Scholar
Belton, M. J. S., Veverka, J., Thomas, P., et al. (1992) Galileo encounter with 951 Gaspra: First pictures of an asteroid. Science, 257, 16471652.Google Scholar
Bitsch, B., Johansen, A., Lambrechts, M., & Morbidelli, A. (2015) The structure of protoplanetary discs around evolving young stars. Astronomy & Astrophysics, 575, A28.Google Scholar
Bottke, W. F., Durda, D. D., Nesvorný, D., et al. (2005) Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus, 179, 6394.Google Scholar
Cunningham, C. J., & Orchiston, W. (2013) Olbers’s planetary explosion hypothesis: Genesis and early nineteenth-century interpretations. Journal for the History of Astronomy, 44, 187205.Google Scholar
Fornasier, S., Clark, B. E., & Dotto, E. (2011) Spectroscopic survey of X-type asteroids. Icarus, 214, 131146.Google Scholar
Greenwood, R. C., Burbine, T. H., & Franchi, I. A. (2020) Linking asteroids and meteorites to the primordial planetesimal population. Geochimica et Cosmochimica Acta, 277, 377406.Google Scholar
Kruijer, T. S., Kleine, T., & Borg, L. E. (2020) The great isotopic dichotomy of the early Solar System. Nature Astronomy, 4, 3240.Google Scholar
Kuiper, G. P. (1956) The formation of the planets, part III. Journal of the Royal Astronomical Society of Canada, 50, 158.Google Scholar
Marchi, S., Bottke, W. F., Cohen, B. A., et al. (2013) High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6, 303307.Google Scholar
McCord, T. B., Adams, J. B., & Johnson, T. V. (1970) Asteroid Vesta: Spectral reflectivity and compositional implications. Science, 168, 14451447.Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. (2009) Asteroids were born big. Icarus, 204, 558573.Google Scholar
Raymond, C. A., Ermakov, A. I., Castillo-Rogez, J. C., et al. (2020) Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 4, 741747.Google Scholar
Ward, W. R. (1981) Solar nebula dispersal and the stability of the planetary system: I. Scanning secular resonance theory. Icarus, 47, 234264.Google Scholar
Wetherill, G. W. (1967) Collisions in the asteroid belt. Journal of Geophysical Reserch, 72, 24292444.Google Scholar
Wetherill, G. W. (1992) An alternative model for the formation of the asteroids. Icarus, 100, 307325.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×