Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:28:29.313Z Has data issue: false hasContentIssue false

Chapter 12 - Neurobiology of Parenting and Implications for Emotion Regulation

from Part IV - Current Trends

Published online by Cambridge University Press:  05 January 2024

Isabelle Roskam
Affiliation:
Université Catholique de Louvain, Belgium
James J. Gross
Affiliation:
University of California, Berkeley
Moïra Mikolajczak
Affiliation:
Université Catholique de Louvain, Belgium
Get access

Summary

The transition to parenthood is a time of psychological and neurobiological reorganization thought to prepare parents for caregiving, including the unique demands of emotion regulation during infancy and early child development. This chapter reviews evidence that highlights changes in maternal brain structure, including data collected from preconception and across the postpartum period. Next, functional neuroimaging studies are described that have highlighted the importance of measuring reactivity to salient infant cues of emotion, specifically, infant facial expression and cries, to our understanding of the parental brain and emotion regulation. Finally, the emerging literature examining the neurobiology of parental emotion regulation is presented. Following this empirical review, limitations and future directions of the field are considered.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, E., Hendler, T., Shapira-Lichter, I., Kanat-Maymon, Y., Zagoory-Sharon, O., & Feldman, R. (2014). Father’s brain is sensitive to childcare experiences. Proceedings of the National Academy of Sciences, 111(27), 97929797.Google Scholar
Barr, R. G. (2014). Crying as a trigger for abusive head trauma: A key to prevention. Pediatric Radiology, 44(4), 559564.CrossRefGoogle ScholarPubMed
Bechtel, K., Gaither, J. R., & Leventhal, J. M. (2020). Impact of the Take 5 Safety Plan for Crying on the occurrence of abusive head trauma in infants. Child abuse review, 29(3), 282290.Google Scholar
Bernard, K., Simons, R., & Dozier, M. (2015). Effects of an attachment‐based intervention on Child Protective Services–referred mothers’ event‐related potentials to children’s emotions. Child Development, 86(6), 16731684.Google Scholar
Bjertrup, A. J., Friis, N. K., & Miskowiak, K. W. (2019). The maternal brain: neural responses to infants in mothers with and without mood disorder. Neuroscience & Biobehavioral Reviews, 107, 196207.Google Scholar
Bornstein, M. H., Putnick, D. L., Rigo, P., Esposito, G., Swain, J. E., Suwalsky, J. T., Su, X., Du, X., Zhang, K., Cote, L. R., De Pisapia, N., & Venuti, P. (2017). Neurobiology of culturally common maternal responses to infant cry. Proceedings of the National Academy of Sciences, 114(45), E9465E9473.Google Scholar
Brunton, P. J., & Russell, J. A. (2008). The expectant brain: adapting for motherhood. Nature Reviews Neuroscience, 9(1), 1125.Google Scholar
Capistrano, C. G., Grande, L. A., McRae, K., Phan, K. L., & Kim, P. (2022). Maternal socioeconomic disadvantage, neural function during volitional emotion regulation, and parenting. Social Neuroscience, 17(3) 276292. doi: 10.1080/17470919.2022.2082521.CrossRefGoogle ScholarPubMed
Dudek, J., Colasante, T., Zuffianò, A., & Haley, D. W. (2020). Changes in cortical sensitivity to infant facial cues from pregnancy to motherhood predict mother–infant bonding. Child Development, 91(1), e198e217. doi: 10.1111/cdev.13182CrossRefGoogle ScholarPubMed
Endendijk, J. J., Spencer, H., van Baar, A. L., & Bos, P. A. (2018). Mothers’ neural responses to infant faces are associated with activation of the maternal care system and observed intrusiveness with their own child. Cognitive, Affective, & Behavioral Neuroscience, 18(4), 609621.Google Scholar
Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693700.Google Scholar
Feldman, R. (2015). The adaptive human parental brain: Implications for children’s social development. Trends in Neurosciences, 38(6), 387399. https://doi.org/10.1016/j.tins.2015.04.004CrossRefGoogle ScholarPubMed
Feldman, R., & Bakermans-Kranenburg, M. J. (2017). Oxytocin: A parenting hormone. Current Opinion in Psychology, 15, 1318.Google Scholar
Firk, C., Dahmen, B., Lehmann, C., Herpertz-Dahlmann, B., & Konrad, K. (2018). Down-regulation of amygdala response to infant crying: A role for distraction in maternal emotion regulation. Emotion, 18(3), 412423.Google Scholar
Glocker, M., Langleben, D. D., Ruparel, K., Loughead, J. W., Gur, R. C., & Sachser, N. (2009). Baby schema in infant faces induces cuteness perception and motivation for caretaking in adults. Ethology, 115(3), 257263.Google Scholar
Gordon, I., Zagoory-Sharon, O., Leckman, J. F., & Feldman, R. (2010). Oxytocin and the development of parenting in humans. Biological Psychiatry, 68(4), 377382. https://doi.org/10.1016/j.biopsych.2010.02.005Google Scholar
Grande, L. A., Olsavsky, A. K., Erhart, A., Dufford, A. J., Tribble, R., Phan, K. L., & Kim, P. (2021). Postpartum stress and neural regulation of emotion among first-time mothers. Cognitive, Affective, & Behavioral Neuroscience, 21(5), 10661082.Google Scholar
Groh, A. M., & Haydon, K. C. (2018). Mothers’ neural and behavioral responses to their infants’ distress cues: The role of secure base script knowledge. Psychological Science, 29(2), 242253.CrossRefGoogle ScholarPubMed
Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348362.CrossRefGoogle ScholarPubMed
Hipwell, A. E., Guo, C., Phillips, M. L., Swain, J. E., & Moses-Kolko, E. L. (2015). Right frontoinsular cortex and subcortical activity to infant cry is associated with maternal mental state talk. The Journal of Neuroscience, 35(37), 1272512732.Google Scholar
Hoekzema, E., Barba-Müller, E., Pozzobon, C., Picado, M., Lucco, F., García-García, D., Soliva, J. C., Tobeña, A., Desco, M., Crone, E. A., Ballesteros, A., Carmona, S., & Vilarroya, O. (2017). Pregnancy leads to long-lasting changes in human brain structure. Nature Neuroscience, 20(2), 287296. https://doi.org/10.1038/nn.4458Google Scholar
Kim, P., Capistrano, C., & Congleton, C. (2016). Socioeconomic disadvantages and neural sensitivity to infant cry: Role of maternal distress. Social Cognitive and Affective Neuroscience, 11(10), 15971607.Google Scholar
Kim, P., Feldman, R., Mayes, L. C., Eicher, V., Thompson, N., Leckman, J. F., & Swain, J. E. (2011). Breastfeeding, brain activation to own infant cry, and maternal sensitivity. Journal of Child Psychology and Psychiatry, 52(8), 907915. https://doi.org/10.1111/j.1469-7610.2011.02406.xCrossRefGoogle ScholarPubMed
Kim, P., Leckman, J. F., Mayes, L. C., Feldman, R., Wang, X., & Swain, J. E. (2010). The plasticity of human maternal brain: Longitudinal changes in brain anatomy during the early postpartum period. Behavioral Neuroscience, 124(5), 695700. https://doi.org/10.1037/a0020884Google Scholar
Kim, P., Leckman, J. F., Mayes, L. C., Newman, M. A., Feldman, R., & Swain, J. E. (2010). Perceived quality of maternal care in childhood and structure and function of mothers’ brain. Developmental Science, 13(4), 662673.Google Scholar
Kim, P., Tribble, R., Olsavsky, A. K., Dufford, A. J., Erhart, A., Hansen, M.,Grande, L., & Gonzalez, D. M. (2020). Associations between stress exposure and new mothers’ brain responses to infant cry sounds. Neuroimage, 223, 117360.Google Scholar
Kringelbach, M. L., Stark, E. A., Alexander, C., Bornstein, M. H., & Stein, A. (2016). On cuteness: Unlocking the parental brain and beyond. Trends in Cognitive Sciences, 20(7), 545558.Google Scholar
Kuzava, S., Frost, A., Perrone, L., Kang, E., Lindhiem, O., & Bernard, K. (2020). Adult processing of child emotional expressions: A meta-analysis of ERP studies. Developmental Psychology, 56(6), 11701190.Google Scholar
Kuzava, S., Nissim, G., Frost, A., Nelson, B., & Bernard, K. (2019). Latent profiles of maternal neural response to infant emotional stimuli: Associations with maternal sensitivity. Biological Psychology, 143, 113120.Google Scholar
Laurent, H. K., & Ablow, J. C. (2012). The missing link: Mothers’ neural response to infant cry related to infant attachment behaviors. Infant Behavior and Development, 35(4), 761772.CrossRefGoogle ScholarPubMed
Lisofsky, N., Gallinat, J., Lindenberger, U., & Kühn, S. (2019). Postpartal neural plasticity of the maternal brain: Early renormalization of pregnancy-related decreases? Neurosignals, 27, 1224.Google Scholar
Lorenz, K. (1943). Die angeborenen Formen möglicher Erfahrung [The innate forms of potential experience]. Zeitschrift fur Tierpsychologie, 5, 233519.Google Scholar
Lowell, A. F., Dell, J., Potenza, M. N., Strathearn, L., Mayes, L. C., & Rutherford, H. J. (2021). Adult attachment is related to maternal neural response to infant cues: An ERP study. Attachment & human development, 1–18.Google Scholar
Luders, E., Kurth, F., Gingnell, M., Engman, J., Yong, E.-L., Poromaa, I. S., & Gaser, C. (2020). From baby brain to mommy brain: Widespread gray matter gain after giving birth. Cortex, 126, 334342.Google Scholar
Martínez-García, M., Paternina-Die, M., Barba-Müller, E., Martín de Blas, D., Beumala, L., Cortizo, R., Pozzobon, C., Marcos-Vidal, L., Fernández-Pena, A., Picado, M., Belmonte-Padilla, E., Massó-Rodriguez, A., Ballesteros, A., Desco, M., Vilarroya, Ó., Hoekzema, E., & Carmona, S. (2021). Do pregnancy-induced brain changes reverse? The brain of a mother six years after parturition. Brain sciences, 11(2), 168.Google Scholar
Maupin, A. N., Hayes, N., Mayes, L., & Rutherford, H. J. V. (2015). The application of electroencephalography to investigate the neural basis of parenting. Parenting: Science and Practice, 15(1), 923. https://doi.org/10.1080/15295192.2015.992735Google Scholar
Mayes, L., Rutherford, H. J. V., Suchman, N., & Close, N. (2012). The neural and psychological dynamics of adults’ transition to parenthood. Zero to Three, 33(2), 8384.Google Scholar
Musser, E. D., Kaiser-Laurent, H., & Ablow, J. C. (2012). The neural correlates of maternal sensitivity: An fMRI study. Developmental Cognitive Neuroscience, 2(4), 428436. https://doi.org/10.1016/j.dcn.2012.04.003Google Scholar
Oatridge, A., Holdcroft, A., Saeed, N., Hajnal, J. V., Puri, B. K., Fusi, L., & Bydder, G. M. (2002). Change in brain size during and after pregnancy: Study in healthy women and women with preeclampsia. American Journal of Neuroradiology, 23(1), 1926.Google Scholar
Parsons, C. E., Young, K. S., Stein, A., & Kringelbach, M. L. (2017). Intuitive parenting: understanding the neural mechanisms of parents’ adaptive responses to infants. Current Opinion in Psychology, 15, 4044.Google Scholar
Paul, S., Austin, J., Elliott, R., Ellison-Wright, I., Wan, M. W., Drake, R., Downey, D., Elmadih, A., Mukherjee, I., Heaney, L., Williams, S., & Abel, K. M. (2019). Neural pathways of maternal responding: systematic review and meta-analysis. Archives of Women’s Mental Health, 22(2), 179187.Google Scholar
Pawluski, J. L., Hoekzema, E., Leuner, B., & Lonstein, J. S. (2021). Less can be more: Fine tuning the maternal brain. Neuroscience & Biobehavioral Reviews, 133, 104475. https://doi.org/10.1016/j.neubiorev.2021.11.045Google Scholar
Peltola, M. J., Strathearn, L., & Puura, K. (2018). Oxytocin promotes face-sensitive neural responses to infant and adult faces in mothers. Psychoneuroendocrinology, 91, 261270.Google Scholar
Peltola, M. J., Yrttiaho, S., Puura, K., Proverbio, A. M., Mononen, N., Lehtimäki, T., & Leppänen, J. M. (2014). Motherhood and oxytocin receptor genetic variation are associated with selective changes in electrocortical responses to infant facial expressions. Emotion, 14(3), 469477.Google Scholar
Penner, F., & Rutherford, H. J. (2022). Emotion regulation during pregnancy: A call to action for increased research, screening, and intervention. Archives of Women’s Mental Health, 25(2), 527531.Google Scholar
Penner, F., Wall, K., Guan, K., Huang, H., Richardson, L., Dunbar, A., Groh, A. M., & Rutherford, H. (2023). Racial disparities in EEG research and their implications for our understanding of the maternal brain. Cognitive, Affective, & Behavioral Neuroscience, 23, 116. https://doi.org/10.3758/s13415-022-01040-wGoogle Scholar
Proverbio, A. M., Brignone, V., Matarazzo, S., Del Zotto, M., & Zani, A. (2006). Gender and parental status affect the visual cortical response to infant facial expression. Neuropsychologia, 44(14), 29872999. https://doi.org/10.1016/j.neuropsychologia.2006.06.015Google Scholar
Purhonen, M., Kilpeläinen-Lees, R., Pääkkönen, A., Yppärilä, H., Lehtonen, J., & Karhu, J. (2001). Effects of maternity on auditory event-related potentials to human sound. Neuroreport, 12(13), 29752979. https://doi.org/10.1097/00001756-200109170-00044Google Scholar
Riem, M. M., Bakermans-Kranenburg, M. J., Pieper, S., Tops, M., Boksem, M. A., Vermeiren, R. R., van Ijzendoorn, M. H., & Rombouts, S. A. (2011). Oxytocin modulates amygdala, insula, and inferior frontal gyrus responses to infant crying: A randomized controlled trial. Biological Psychiatry, 70(3), 291297.Google Scholar
Rigo, P., Kim, P., Esposito, G., Putnick, D. L., Venuti, P., & Bornstein, M. H. (2019). Specific maternal brain responses to their own child’s face: An fMRI meta-analysis. Developmental Review, 51, 5869.Google Scholar
Rilling, J. K. (2013). The neural and hormonal bases of human parental care. Neuropsychologia, 51(4), 731747.Google Scholar
Rutherford, H., Booth, C. R., Luyten, P., Bridgett, D. J., & Mayes, L. C. (2015). Investigating the association between parental reflective functioning and distress tolerance in motherhood. Infant Behavior and Development, 40, 5463. https://doi.org/10.1016/j.infbeh.2015.04.005Google Scholar
Rutherford, H., Byrne, S. P., Austin, G. M., Lee, J. D., Crowley, M. J., & Mayes, L. C. (2017). Anxiety and neural responses to infant and adult faces during pregnancy. Biological Psychology, 125, 115120. https://doi.org/10.1016/j.biopsycho.2017.03.002Google Scholar
Rutherford, H., Goldberg, B., Luyten, P., Bridgett, D. J., & Mayes, L. C. (2013). Parental reflective functioning is associated with tolerance of infant distress but not general distress: Evidence for a specific relationship using a simulated baby paradigm. Infant Behavior and Development, 36(4), 635641. https://doi.org/10.1016/j.infbeh.2013.06.008Google Scholar
Rutherford, H., Guo, X. M., Graber, K. M., Hayes, N. J., Pelphrey, K. A., & Mayes, L. C. (2017). Intranasal oxytocin and the neural correlates of infant face processing in non-parent women. Biological Psychology, 129, 4548. https://doi.org/10.1016/j.biopsycho.2017.08.002CrossRefGoogle ScholarPubMed
Rutherford, H., Kim, S., Yip, S. W., Potenza, M. N., Mayes, L. C., & Strathearn, L. (2021). Parenting and addictions: Current insights from human neuroscience. Current addiction reports, 8(3), 380388.Google Scholar
Rutherford, H., Wallace, N. S., Laurent, H. K., & Mayes, L. C. (2015). Emotion regulation in parenthood. Developmental Review, 36, 1-14. https://doi.org/10.1016/j.dr.2014.12.008CrossRefGoogle ScholarPubMed
Seifritz, E., Esposito, F., Neuhoff, J. G., Luthi, A., Mustovic, H., Dammann, G., von Bardeleben, U., Radue, E. W., Cirillo, S., Tedeschi, G., & Di Salle, F. (2003). Differential sex-independent amygdala response to infant crying and laughing in parents versus nonparents. Biological Psychiatry, 54(12), 13671375.CrossRefGoogle ScholarPubMed
Squire, S., & Stein, A. (2003). Functional MRI and parental responsiveness: a new avenue into parental psychopathology and early parent–child interactions? The British Journal of Psychiatry, 183(6), 481483. https://doi.org/10.1192/bjp.183.6.481Google Scholar
Strathearn, L., Fonagy, P., Amico, J., & Montague, P. R. (2009). Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology, 34(13), 26552666. https://doi.org/10.1038/npp.2009.103Google Scholar
Swain, J. E. (2011). The human parental brain: In vivo neuroimaging. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(5), 12421254. https://doi.org/10.1016/j.pnpbp.2010.10.017Google Scholar
Swain, J. E., Tasgin, E., Mayes, L. C., Feldman, R., Todd Constable, R., & Leckman, J. F. (2008). Maternal brain response to own baby-cry is affected by cesarean section delivery. Journal of Child Psychology and Psychiatry, 49(10), 10421052. https://doi.org/10.1111/j.1469-7610.2008.01963.xCrossRefGoogle ScholarPubMed
Witteman, J., Van IJzendoorn, M., Rilling, J., Bos, P., Schiller, N., & Bakermans-Kranenburg, M. (2019). Towards a neural model of infant cry perception. Neuroscience & Biobehavioral Reviews, 99, 2332.Google Scholar
Yatziv, T., Vancor, E. A., Bunderson, M., & Rutherford, H. J. (2021). Maternal perinatal anxiety and neural responding to infant affective signals: Insights, challenges, and a road map for neuroimaging research. Neuroscience & Biobehavioral Reviews, 131, 387399.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×