We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper develops the estimation method of mean and covariance functions of functional data with additional covariate information. With the strength of both local linear smoothing modeling and general weighing scheme, we are able to explicitly characterize the mean and covariance functions with incorporating covariate for irregularly spaced and sparsely observed longitudinal data, as typically encountered in engineering technology or biomedical studies, as well as for functional data which are densely measured. Theoretically, we establish the uniform convergence rates of the estimators in the general weighing scheme. Monte Carlo simulation is conducted to investigate the finite-sample performance of the proposed approach. Two applications including the children growth data and white matter tract dataset obtained from Alzheimer's Disease Neuroimaging Initiative study are also provided.
This appendix collects a review of the calculus and analysis in one and several variables that the reader should be familiar with. Notions of convergence, continuity, differentiability and integrability are recalled here.
In this paper, we present a method for generating a copula by composing two arbitrary n-dimensional copulas via a vector of bivariate functions, where the resulting copula is named as the multivariate composite copula. A necessary and sufficient condition on the vector guaranteeing the composite function to be a copula is given, and a general approach to construct the vector satisfying this necessary and sufficient condition via bivariate copulas is provided. The multivariate composite copula proposes a new framework for the construction of flexible multivariate copula from existing ones, and it also includes some known classes of copulas. It is shown that the multivariate composite copula has a clear probability structure, and it satisfies the characteristic of uniform convergence as well as the reproduction property for its component copulas. Some properties of multivariate composite copulas are discussed. Finally, numerical illustrations and an empirical example on financial data are provided to show the advantages of the multivariate composite copula, especially in capturing the tail dependence.
We study criteria for the uniform convergence of trigonometric series with general monotone coefficients. We also obtain necessary and sufficient conditions for a given rate of convergence of partial Fourier sums of such series.
We analyse the performance of a recursive Monte Carlo method for the Bayesian estimation of the static parameters of a discrete-time state-space Markov model. The algorithm employs two layers of particle filters to approximate the posterior probability distribution of the model parameters. In particular, the first layer yields an empirical distribution of samples on the parameter space, while the filters in the second layer are auxiliary devices to approximate the (analytically intractable) likelihood of the parameters. This approach relates the novel algorithm to the recent sequential Monte Carlo square method, which provides a nonrecursive solution to the same problem. In this paper we investigate the approximation of integrals of real bounded functions with respect to the posterior distribution of the system parameters. Under assumptions related to the compactness of the parameter support and the stability and continuity of the sequence of posterior distributions for the state-space model, we prove that the Lp norms of the approximation errors vanish asymptotically (as the number of Monte Carlo samples generated by the algorithm increases) and uniformly over time. We also prove that, under the same assumptions, the proposed scheme can asymptotically identify the parameter values for a class of models. We conclude the paper with a numerical example that illustrates the uniform convergence results by exploring the accuracy and stability of the proposed algorithm operating with long sequences of observations.
In this paper, we study the numerical solution of singularly perturbed time-dependent convection-diffusion problems. To solve these problems, the backward Euler method is first applied to discretize the time derivative on a uniform mesh, and the classical upwind finite difference scheme is used to approximate the spatial derivative on an arbitrary nonuniform grid. Then, in order to obtain an adaptive grid for all temporal levels, we construct a positive monitor function, which is similar to the arc-length monitor function. Furthermore, the ε-uniform convergence of the fully discrete scheme is derived for the numerical solution. Finally, some numerical results are given to support our theoretical results.
In this paper, we propose an uniformly convergent adaptive finite element method with hybrid basis (AFEM-HB) for the discretization of singularly perturbed nonlinear eigenvalue problems under constraints with applications in Bose-Einstein condensation (BEC) and quantum chemistry. We begin with the time-independent Gross-Pitaevskii equation and show how to reformulate it into a singularly perturbed nonlinear eigenvalue problem under a constraint. Matched asymptotic approximations for the problem are reviewed to confirm the asymptotic behaviors of the solutions in the boundary/interior layer regions. By using the normalized gradient flow, we propose an adaptive finite element with hybrid basis to solve the singularly perturbed nonlinear eigenvalue problem. Our basis functions and the mesh are chosen adaptively to the small parameter ε. Extensive numerical results are reported to show the uniform convergence property of our method. We also apply the AFEM-HB to compute the ground and excited states of BEC with box/harmonic/optical lattice potential in the semiclassical regime (0 <ε≪C 1). In addition, we give a detailed error analysis of our AFEM-HB to a simpler singularly perturbed two point boundary value problem, show that our method has a minimum uniform convergence order
We derive and analyze adaptive solvers for boundary value problems in which thedifferential operator depends affinely on a sequence of parameters. These methods convergeuniformly in the parameters and provide an upper bound for the maximal error. Numericalcomputations indicate that they are more efficient than similar methods that control theerror in a mean square sense.
In a variety of modern applications there arises a need to tessellate the domain into representative regions, called Voronoi cells. A particular type of such tessellations, called centroidal Voronoi tessellations or CVTs, are in big demand due to their optimality properties important for many applications. The availability of fast and reliable algorithms for their construction is crucial for their successful use in practical settings. This paper introduces a new multigrid algorithm for constructing CVTs that is based on the MG/Opt algorithm that was originally designed to solve large nonlinear optimization problems. Uniform convergence of the new method and its speedup comparing to existing techniques are demonstrated for linear and nonlinear densities for several 1d and 2d problems, and O(k) complexity estimation is provided for a problem with k generators.
Throughout recent years, various sequential Monte Carlo methods, i.e. particle filters, have been widely applied to various applications involving the evaluation of the generally intractable stochastic discrete-time filter. Although convergence results exist for finite-time intervals, a stronger form of convergence, namely, uniform convergence, is required for bounding the error on an infinite-time interval. In this paper we prove easily verifiable conditions for the filter applications that are sufficient for the uniform convergence of certain particle filters. Essentially, the conditions require the observations to be accurate enough. No mixing or ergodicity conditions are imposed on the signal process.
In this paper, we establish a simple asymptotic formula for the finite-time ruin probability of the compound Poisson model with constant interest force and subexponential claims in the case that the initial surplus is large. The formula is consistent with known results for the ultimate ruin probability and, in particular, is uniform for all time horizons when the claim size distribution is regularly varying tailed.
We consider a multi-type branching random walk on d-dimensional Euclidian space. The~uniform convergence, as n goes to infinity, of a scaled version of the Laplace transform of the point process given by the nth generation particles of each type is obtained. Similar results in the one-type case, where the transform gives a martingale, were obtained in Biggins (1992) and Barral (2001). This uniform convergence of transforms is then used to obtain limit results for numbers in the underlying point processes. Supporting results, which are of interest in their own right, are obtained on (i) ‘Perron-Frobenius theory’ for matrices that are smooth functions of a variable λ∈L and are nonnegative when λ∈L−⊂L, where L is an open set in ℂd, and (ii) saddlepoint approximations of multivariate distributions. The saddlepoint approximations developed are strong enough to give a refined large deviation theorem of Chaganty and Sethuraman (1993) as a by-product.
In this paper, a concept of nearness convergence is introduced which contains the proximal convergence of Leader as a special case. It is proved that uniform convergence and this nearness convergence are equivalent on totally bounded uniform nearness spaces. One of the features of this convergence is that it lies between uniform convergence and pointwise convergence, and implies uniform convergence on compacta. Some other weaker notions of nearness convergence which are sufficient to preserve nearness maps are also discussed.
Let X and Y be metric spaces. This paper considers the relationship between uniform convergence in C(X, Y) and topological convergence of functions in C(X, Y), viewed as subsets of X×Y. In general, uniform convergence in C(X, Y) implies Hausdorff metric convergence which, in turn, implies topological convergence, but if X and Y are compact, then all three notions are equivalent. If C([0, 1], Y) is nontrivial arid topological convergence in C(X, Y) implies uniform converger ce then X is compact. Theorem: Let X be compact and Y be loyally compact but noncompact. Then topological convergence in C(X, Y) implies uniform convergence if and only if X has finitely many components. We also sharpen a related result of Naimpally.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.