Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T00:44:44.588Z Has data issue: false hasContentIssue false

Uniformly convergent adaptive methods for a class of parametricoperator equations

Published online by Cambridge University Press:  13 June 2012

Claude Jeffrey Gittelson*
Affiliation:
Seminar for Applied Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland. claude.gittelson@sam.math.ethz.ch Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, 47907 IN, USA
Get access

Abstract

We derive and analyze adaptive solvers for boundary value problems in which thedifferential operator depends affinely on a sequence of parameters. These methods convergeuniformly in the parameters and provide an upper bound for the maximal error. Numericalcomputations indicate that they are more efficient than similar methods that control theerror in a mean square sense.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babuška, I. and Chatzipantelidis, P., On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 191 (2002) 40934122. Google Scholar
Babuška, I.M., Tempone, R. and Zouraris, G.E., Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800825 (electronic). Google Scholar
Babuška, I.M., Nobile, F. and Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 10051034 (electronic). Google Scholar
A. Barinka, Fast Evaluation Tools for Adaptive Wavelet Schemes. Ph.D. thesis, RWTH Aachen (2005).
Bieri, M. and Schwab, C., Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198 (2009) 11491170. Google Scholar
Bieri, M., Andreev, R. and Schwab, C., Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31 (2009/2010) 42814304. Google Scholar
Binev, P., Dahmen, W. and DeVore, R.A., Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219268. Google Scholar
A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. Technical Report 44, SAM, ETHZ (2011).
Cohen, A., Dahmen, W. and DeVore, R.A., Adaptive wavelet methods for elliptic operator equations : convergence rates. Math. Comput. 70 (2001) 2775 (electronic). Google Scholar
Cohen, A., Dahmen, W. and DeVore, R.A., Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math. 2 (2002) 203245. Google Scholar
Cohen, A., DeVore, R.A. and Schwab, C., Convergence rates of best -term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615646. Google Scholar
Cohen, A., DeVore, R. and Schwab, C., Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9 (2011) 1147. Google Scholar
Dahlke, S., Fornasier, M. and Raasch, T., Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27 (2007) 2763. Google Scholar
Dahlke, S., Raasch, T., Werner, M., Fornasier, M. and Stevenson, R., Adaptive frame methods for elliptic operator equations : the steepest descent approach. IMA J. Numer. Anal. 27 (2007) 717740. Google Scholar
Deb, M.K., Babuška, I.M. and Oden, J.T., Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190 (2001) 63596372. Google Scholar
Dijkema, T.J., Schwab, C. and Stevenson, R., An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30 (2009) 423455. Google Scholar
Dörfler, W., A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 11061124. Google Scholar
Frauenfelder, P., Schwab, C. and Todor, R.A., Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005) 205228. Google Scholar
Gantumur, T., Harbrecht, H. and Stevenson, R., An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76 (2007) 615629 (electronic). Google Scholar
W. Gautschi, Orthogonal polynomials : computation and approximation, in Numer. Math. Sci. Comput. Oxford University Press, Oxford Science Publications, New York (2004).
R.G. Ghanem and P.D. Spanos, Stochastic finite elements : a spectral approach. Springer-Verlag, New York (1991).
C.J. Gittelson, Adaptive Galerkin Methods for Parametric and Stochastic Operator Equations. Ph.D. thesis, ETH Dissertation No. 19533. ETH Zürich (2011).
C.J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators. Math. Comput. (2011). To appear.
C.J. Gittelson, Convergence Rates of Multilevel and Sparse Tensor Approximations for a Random Elliptic PDE (2012). Submitted.
Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R. and Sloan, I.H., Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230 (2011) 36683694. Google Scholar
R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras I, Elementary theory, Reprint of the 1983 original, in Graduate Studies in Mathematics. Amer. Math. Soc. 15 (1997).
Matthies, H.G. and Keese, A., Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194 (2005) 12951331. Google Scholar
A. Metselaar, Handling Wavelet Expansions in Numerical Methods. Ph.D. thesis, University of Twente (2002).
Morin, P., Nochetto, R.H. and Siebert, K.G., Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466488 (electronic). Google Scholar
Nobile, F., Tempone, R. and Webster, C.G., An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 24112442. Google Scholar
W. Rudin, Functional analysis, 2nd edition. International Series in Pure Appl. Math. McGraw-Hill Inc., New York (1991).
Schwab, C. and Gittelson, C.J., Sparse tensor discretization of high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291467. Google Scholar
Stevenson, R., Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41 (2003) 10741100 (electronic). Google Scholar
Stone, M.H., The generalized Weierstrass approximation theorem. Math. Mag. 21 (1948) 237254. Google Scholar
G. Szegő, Orthogonal polynomials, 4th edition, in Colloq. Publ. XXIII. Amer. Math. Soc. (1975).
Todor, R.A. and Schwab, C., Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27 (2007) 232261. Google Scholar
Wan, X. and Karniadakis, G.E., An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209 (2005) 617642. Google Scholar
Wan, X. and Karniadakis, G.E., Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28 (2006) 901928 (electronic). Google Scholar
Wan, X. and Karniadakis, G.E., Solving elliptic problems with non-Gaussian spatially-dependent random coefficients. Comput. Methods Appl. Mech. Eng. 198 (2009) 19851995. Google Scholar
Xiu, D., Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2 (2007) 293309. Google Scholar
D. Xiu, Numerical methods for stochastic computations : A spectral method approach. Princeton University Press, Princeton, NJ (2010).
Xiu, D. and Hesthaven, J.S., High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27 (2005) 11181139 (electronic). Google Scholar
Xiu, D. and Karniadakis, G.E., The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619644 (electronic). Google Scholar