In this paper we prove the Rigidity Theorem for motives of rigid analytic varieties over a non-Archimedean valued field $K$. We prove this theorem both for motives with transfers and without transfers in a relative setting. Applications include the construction of étale realization functors, an upgrade of the known comparison between motives with and without transfers and an upgrade of the rigid analytic motivic tilting equivalence, extending them to $\mathbb{Z}[1/p]$-coefficients.