We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that a class of higher-dimensional hyperbolic endomorphisms admit absolutely continuous invariant probabilities whose densities are regular and vary differentiably with respect to the dynamical system. The maps we consider are skew-products given by $T(x,y) = (E (x), C(x,y))$, where E is an expanding map of $\mathbb {T}^u$ and C is a contracting map on each fiber. If $\inf |\!\det DT| \inf \| (D_yC)^{-1}\| ^{-2s}>1$ for some ${s<r-(({u+d})/{2}+1)}$, $r \geq 2$, and T satisfies a transversality condition between overlaps of iterates of T (a condition which we prove to be $C^r$-generic under mild assumptions), then the SRB measure $\mu _T$ of T is absolutely continuous and its density $h_T$ belongs to the Sobolev space $H^s({\mathbb {T}}^u\times {\mathbb {R}}^d)$. When $s> {u}/{2}$, it is also valid that the density $h_T$ is differentiable with respect to T. Similar results are proved for thermodynamical quantities for potentials close to the geometric potential.
We consider a robust class of random non-uniformly expanding local homeomorphisms and Hölder continuous potentials with small variation. For each element of this class we develop the thermodynamical formalism and prove the existence and uniqueness of equilibrium states among non-uniformly expanding measures. Moreover, we show that these equilibrium states and the random topological pressure vary continuously in this setting.
We study the thermodynamic formalism of a $C^{\infty }$ non-uniformly hyperbolic diffeomorphism on the 2-torus, known as the Katok map. We prove for a Hölder continuous potential with one additional condition, or geometric $t$-potential $\unicode[STIX]{x1D711}_{t}$ with $t<1$, the equilibrium state exists and is unique. We derive the level-2 large deviation principle for the equilibrium state of $\unicode[STIX]{x1D711}_{t}$. We study the multifractal spectra of the Katok map for the entropy and dimension of level sets of Lyapunov exponents.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.