We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is concerned with the optimal number of redundant allocation to n-component coherent systems consisting of heterogeneous dependent components. We assume that the system is built up of L groups of different components,
$L\geq 1$
, where there are
$n_i$
components in group i, and
$\sum_{i=1}^{L}n_i=n$
. The problem of interest is to allocate
$v_i$
active redundant components to each component of type i,
$i=1,\dots, L$
. To get the optimal values of
$v_i$
we propose two cost-based criteria. One of them is introduced based on the costs of renewing the failed components and the costs of refreshing the alive ones at the system failure time. The other criterion is proposed based on the costs of replacing the system at its failure time or at a predetermined time
$\tau$
, whichever occurs first. The expressions for the proposed functions are derived using the mixture representation of the system reliability function based on the notion of survival signature. We assume that a given copula function models the dependency structure between the components. In the particular case that the system is a series-parallel structure, we provide the formulas for the proposed cost-based functions. The results are discussed numerically for some specific coherent systems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.