To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The homology of the free and the based loop space of a compact globally symmetric space can be studied through explicit cycles. We use cycles constructed by Bott and Samelson and by Ziller to study the string topology coproduct and the Chas-Sullivan product on compact symmetric spaces. We show that the Chas-Sullivan product for compact symmetric spaces is highly non-trivial for any rank and we prove that there are many non-nilpotent classes whose powers correspond to the iteration of closed geodesics. Moreover, we show that the based string topology coproduct is trivial for compact symmetric spaces of higher rank and we study the implications of this result for the string topology coproduct on the free loop space.
For almost any compact connected Lie group $G$ and any field $\mathbb{F}_{p}$, we compute the Batalin–Vilkovisky algebra $H^{\star +\text{dim}\,G}(\text{LBG};\mathbb{F}_{p})$ on the loop cohomology of the classifying space introduced by Chataur and the second author. In particular, if $p$ is odd or $p=0$, this Batalin–Vilkovisky algebra is isomorphic to the Hochschild cohomology $HH^{\star }(H_{\star }(G),H_{\star }(G))$. Over $\mathbb{F}_{2}$ , such an isomorphism of Batalin–Vilkovisky algebras does not hold when $G=\text{SO}(3)$ or $G=G_{2}$. Our elaborate considerations on the signs in string topology of the classifying spaces give rise to a general theorem on graded homological conformal field theory.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.