We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Large real-world networks although being globally sparse, in terms of the number of edges, have their nodes/vertices connected by relatively short paths. In addition, such networks are locally dense, i.e., vertices lying in a small neighborhood of a given vertex are connected by many edges. This observation is called the “small-world” phenomenon, and it has generated many attempts, both theoretical and experimental, to build and study appropriate models of small-world networks. The first attempt to explain this phenomenon and to build a more realistic model was introduced by Watts and Strogatz in 1998 followed by the publication of an alternative approach by Kleinberg in 2000. The current chapter is devoted to the presentation of both models.
To describe coauthorship networks, we begin with the Erdös number, which links mathematicians to their famously prolific colleague through the papers they have collaborated on. Coauthorship networks help us capture collaborative patterns and identify important features that characterize them. We can also use them to predict how many collaborators a scientist will have in the future based on her coauthorship history. We find that collaboration networks are scale-free, following a power-law distribution. As a consequence of the Matthew effect, frequent collaborators are more likely to collaborate, becoming hubs in their networks. We then explore the small-world phenomenon evidenced in coauthorship networks, which is sometimes referred to as “six degrees of separation.” To understand how a network’s small-worldliness impacts creativity and success, we look to teams of artists collaborating on Broadway musicals, finding that teams perform best when the network they inhabit is neither too big or too small. We end by discussing how connected components within networks provide evidence for the “invisible college.”
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.