We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
By using fixed point argument, we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric $g=\frac {da^2}{h(a^2)}+a^2g_{S^n}$ for some function h where $g_{S^n}$ is the standard metric on the unit sphere $S^n$ in $\mathbb {R}^n$ for any $n\ge 2$. More precisely, for any $\lambda \ge 0$ and $c_0>0$, we prove that there exist infinitely many solutions ${h\in C^2((0,\infty );\mathbb {R}^+)}$ for the equation $2r^2h(r)h_{rr}(r)=(n-1)h(r)(h(r)-1)+rh_r(r)(rh_r(r)-\lambda r-(n-1))$, $h(r)>0$, in $(0,\infty )$ satisfying $\underset {\substack {r\to 0}}{\lim }\,r^{\sqrt {n}-1}h(r)=c_0$ and prove the higher-order asymptotic behavior of the global singular solutions near the origin. We also find conditions for the existence of unique global singular solution of such equation in terms of its asymptotic behavior near the origin.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.