We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a Gromov hyperbolic domain $G\subsetneq \mathbb{R}^n$ with uniformly perfect Gromov boundary, Zhou and Rasila recently proved that for all quasiconformal homeomorphisms $\psi\colon G\to G$ with identity value on the Gromov boundary, the quasihyperbolic displacement $k_G(x,\psi(x))$ for all $x\in G$ is bounded above. In this paper, we generalize this result and establish Teichmüller displacement theorem for quasi-isometries of Gromov hyperbolic spaces in a quantitative way. As applications, we obtain its connections to bilipschitz extensions of certain Gromov hyperbolic spaces.
We study a family of finitely generated residually finite small-cancellation groups. These groups are quotients of $F_2$ depending on a subset $S$ of positive integers. Varying $S$ yields continuously many groups up to quasi-isometry.
Kanai proved powerful results on the stability under quasi-isometries of numerous global properties (including Liouville property) between Riemannian manifolds of bounded geometry. Since his work focuses more on the generality of the spaces considered than on the two-dimensional geometry, Kanai's hypotheses in many cases are not satisfied in the context of Riemann surfaces endowed with the Poincaré metric. In this work we fill that gap for the Liouville property, by proving its stability by quasi-isometries for every Riemann surface (and even Riemannian surfaces with pinched negative curvature). Also, a key result characterizes Riemannian surfaces which are quasi-isometric to $\mathbb {R}$.
In this chapter, we introduce the fundamental concepts investigated, namely coarse structures, coarsely bounded sets and large-scale geometry. We show how all topological groups carry an intrinsic coarse structure and determine when this is metrisable. We furthermore discuss quasi-metric structures and spaces and show how, in many familiar cases, the coarse structure on a topological group admits a refinement to a quasi-metric structure.
The aim of this paper is to shed light on our understanding of large scale properties of infinite strings. We say that one string
$\alpha $
has weaker large scale geometry than that of
$\beta $
if there is color preserving bi-Lipschitz map from
$\alpha $
into
$\beta $
with small distortion. This definition allows us to define a partially ordered set of large scale geometries on the classes of all infinite strings. This partial order compares large scale geometries of infinite strings. As such, it presents an algebraic tool for classification of global patterns. We study properties of this partial order. We prove, for instance, that this partial order has a greatest element and also possess infinite chains and antichains. We also investigate the sets of large scale geometries of strings accepted by finite state machines such as Büchi automata. We provide an algorithm that describes large scale geometries of strings accepted by Büchi automata. This connects the work with the complexity theory. We also prove that the quasi-isometry problem is a
$\Sigma _2^0$
-complete set, thus providing a bridge with computability theory. Finally, we build algebraic structures that are invariants of large scale geometries. We invoke asymptotic cones, a key concept in geometric group theory, defined via model-theoretic notion of ultra-product. Partly, we study asymptotic cones of algorithmically random strings, thus connecting the topic with algorithmic randomness.
Assume that $\unicode[STIX]{x1D6FA}$ and $D$ are two domains with compact smooth boundaries in the extended complex plane $\overline{\mathbf{C}}$. We prove that every quasiconformal mapping between $\unicode[STIX]{x1D6FA}$ and $D$ mapping $\infty$ onto itself is bi-Lipschitz continuous with respect to both the Euclidean and Riemannian metrics.
We make a few observations on the absence of geometric and topological rigidity for acylindrically hyperbolic and relatively hyperbolic groups. In particular, we demonstrate the lack of a well-defined limit set for acylindrical actions on hyperbolic spaces, even under the assumption of universality. We also prove a statement about relatively hyperbolic groups inspired by a remark by Groves, Manning, and Sisto about the quasi-isometry type of combinatorial cusps. Finally, we summarize these results in a table in order to assert a meta-statement about the decay of metric rigidity as the conditions on actions on hyperbolic spaces are loosened.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.