We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article we study higher preprojective algebras, showing that various known results for ordinary preprojective algebras generalize to the higher setting. We first show that the quiver of the higher preprojective algebra is obtained by adding arrows to the quiver of the original algebra, and these arrows can be read off from the last term of the bimodule resolution of the original algebra. In the Koszul case, we are able to obtain the new relations of the higher preprojective algebra by differentiating a superpotential and we show that when our original algebra is $d$-hereditary, all the relations come from the superpotential. We then construct projective resolutions of all simple modules for the higher preprojective algebra of a $d$-hereditary algebra. This allows us to recover various known homological properties of the higher preprojective algebras and to obtain a large class of almost Koszul dual pairs of algebras. We also show that when our original algebra is Koszul there is a natural map from the quadratic dual of the higher preprojective algebra to a graded trivial extension algebra.
This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.
Let $\mathfrak{n}$ be a maximal nilpotent subalgebra of a complex symmetric Kac–Moody Lie algebra. Lusztig has introduced a basis of $U(\mathfrak{n})$ called the semicanonical basis, whose elements can be seen as certain constructible functions on varieties of nilpotent modules over a preprojective algebra of the same type as $\mathfrak{n}$. We prove a formula for the product of two elements of the dual of this semicanonical basis, and more generally for the product of two evaluation forms associated to arbitrary modules over the preprojective algebra. This formula plays an important rôle in our work on the relationship between semicanonical bases, representation theory of preprojective algebras, and Fomin and Zelevinsky's theory of cluster algebras. It was inspired by recent results of Caldero and Keller.
We study the moment map associated to the cotangent bundle of the space of representations of a quiver, determining when it is flat, and giving a stratification of its Marsden–Weinstein reductions. In order to do this we determine the possible dimension vectors of simple representations of deformed preprojective algebras. In an appendix we use deformed preprojective algebras to give a simple proof of much of Kac's Theorem on representations of quivers in characteristic zero.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.