We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the noise sensitivity of the minimum spanning tree (MST) of the $n$-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by $n^{1/3}$ and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability $\varepsilon \gg n^{-1/3}$, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if $\varepsilon \ll n^{-1/3}$, the GHP distance between the rescaled trees goes to $0$ in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of $n^{-1/3}$ coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.