We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let p be a prime number. Let $n\geq 2$ be an integer given by $n = p^{m_1} + p^{m_2} + \cdots + p^{m_r}$, where $0\leq m_1 < m_2 < \cdots < m_r$ are integers. Let $a_0, a_1, \ldots , a_{n-1}$ be integers not divisible by p. Let $K = \mathbb Q(\theta )$ be an algebraic number field with $\theta \in {\mathbb C}$ a root of an irreducible polynomial $f(x) = \sum _{i=0}^{n-1}a_i{x^i}/{i!} + {x^n}/{n!}$ over the field $\mathbb Q$ of rationals. We prove that p divides the common index divisor of K if and only if $r>p$. In particular, if $r>p$, then K is always nonmonogenic. As an application, we show that if $n \geq 3$ is an odd integer such that $n-1\neq 2^s$ for $s\in {\mathbb Z}$ and K is a number field generated by a root of a truncated exponential Taylor polynomial of degree n, then K is always nonmonogenic.
Let $K={\mathbf {Q}}(\theta )$ be an algebraic number field with $\theta$ a root of an irreducible polynomial $x^5+ax+b\in {\mathbf {Z}}[x]$. In this paper, for every rational prime $p$, we provide necessary and sufficient conditions on $a,\,~b$ so that $p$ is a common index divisor of $K$. In particular, we give sufficient conditions on $a,\,~b$ for which $K$ is non-monogenic. We illustrate our results through examples.
Let q be a prime number and
$K = \mathbb Q(\theta )$
be an algebraic number field with
$\theta $
a root of an irreducible trinomial
$x^{6}+ax+b$
having integer coefficients. In this paper, we provide some explicit conditions on
$a, b$
for which K is not monogenic. As an application, in a special case when
$a =0$
, K is not monogenic if
$b\equiv 7 \mod 8$
or
$b\equiv 8 \mod 9$
. As an example, we also give a nonmonogenic class of number fields defined by irreducible sextic trinomials.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.