We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that the opposite of the category of coalgebras for the Vietoris endofunctor on the category of compact Hausdorff spaces is monadic over $\mathsf {Set}$. We deliver an analogous result for the upper, lower, and convex Vietoris endofunctors acting on the category of stably compact spaces. We provide axiomatizations of the associated (infinitary) varieties. This can be seen as a version of Jónsson–Tarski duality for modal algebras beyond the zero-dimensional setting.
Let be the category of all homomorphisms (i.e. functions preserving satisfaction of atomic formulas) between models of a set of sentences T in a finitary first-order language L. Functors between two such categories are said to be canonical if they commute with the forgetful functors. The following properties are characterized syntactically and also in terms of closure of for some algebraic constructions (involving products, equalizers, factorizations and kernel pairs): There is a canonical isomorphism from to a variety (resp. quasivariety) in a finitary expansion of L which assigns to a model its (unique) expansion. This solves a problem of H. Volger.
In the case of a purely algebraic language, the properties are equivalent to:“ is canonically isomorphic to a finitary variety (resp. quasivariety)” and, for the variety case, to “the forgetful functor of is monadic (tripleable)”.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.