To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Douglas–Rachford algorithm is one of the most prominent splitting algorithms for solving convex optimization problems. Recently, the method has been successful in finding a generalized solution (provided that one exists) for optimization problems in the inconsistent case (i.e., when a solution does not exist). The convergence analysis of the inconsistent case hinges on the study of the range of the displacement operator associated with the Douglas–Rachford splitting operator and the corresponding minimal displacement vector. A comprehensive study of this range has been developed in finite-dimensional Hilbert spaces. In this paper, we provide a formula for the range of the Douglas–Rachford splitting operator in (possibly) infinite-dimensional Hilbert spaces under mild assumptions on the underlying operators. Our new results complement known results in finite-dimensional Hilbert spaces. Several examples illustrate and tighten our conclusions.
Averaged operators are important in Convex Analysis and Optimization Algorithms. In this article, we propose classifications of averaged operators, firmly nonexpansive operators, and proximal operators using the Bauschke–Bendit–Moursi modulus of averagedness. We show that if an operator is averaged with a constant less than $1/2$, then it is a bi-Lipschitz homeomorphism. Amazingly the proximal operator of a convex function has its modulus of averagedness less than $1/2$ if and only if the function is Lipschitz smooth. Some results on the averagedness of operator compositions are obtained. Explicit formulae for calculating the modulus of averagedness of resolvents and proximal operators in terms of various values associated with the maximally monotone operator or subdifferential are also given. Examples are provided to illustrate our results.
The most important open problem in monotone operator theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that the classical Rockafellar’s constraint qualification holds. In this paper, we establish the maximal monotonicity of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}A+B$ provided that $A$ and $B$ are maximally monotone operators such that ${\rm star}({\rm dom}\ A)\cap {\rm int}\, {\rm dom}\, B\neq \varnothing $, and $A$ is of type (FPV). We show that when also ${\rm dom}\ A$ is convex, the sum operator $A+B$ is also of type (FPV). Our result generalizes and unifies several recent sum theorems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.