We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In his Tractatus, Wittgenstein maintained that arithmetic consists of equations arrived at by the practice of calculating outcomes of operations
$\Omega ^{n}(\bar {\xi })$
defined with the help of numeral exponents. Since
$Num$
(x) and quantification over numbers seem ill-formed, Ramsey wrote that the approach is faced with “insuperable difficulties.” This paper takes Wittgenstein to have assumed that his audience would have an understanding of the implicit general rules governing his operations. By employing the Tractarian logicist interpretation that the N-operator
$N(\bar {\xi })$
and recursively defined arithmetic operators
$\Omega ^{n}(\bar {\xi })$
are not different in kind, we can address Ramsey’s problem. Moreover, we can take important steps toward better understanding how Wittgenstein might have imagined emulating proof by mathematical induction.
We consider the standard slotted ALOHA system with a finite number of buffered users. Stability analysis of such a system was initiated by Tsybakov and Mikhailov (1979). Since then several bounds on the stability region have been established; however, the exact stability region is known only for the symmetric system and two-user ALOHA. This paper proves necessary and sufficient conditions for stability of the ALOHA system. We accomplish this by means of a novel technique based on three simple observations: applying mathematical induction to a smaller copy of the system, isolating a single queue for which Loynes' stability criteria is adopted, and finally using stochastic dominance to verify the required stationarity assumptions in the Loynes criterion. We also point out that our technique can be used to assess stability regions for other multidimensional systems. We illustrate it by deriving stability regions for buffered systems with conflict resolution algorithms (see also Georgiadis and Szpankowski (1992) for similar approach applied to stability of token-passing rings).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.