Let
\{M_{n}\}_{n=1}^{\infty } be a sequence of expanding matrices with
M_{n}=\operatorname{diag}(p_{n},q_{n}), and let
\{{\mathcal{D}}_{n}\}_{n=1}^{\infty } be a sequence of digit sets with
{\mathcal{D}}_{n}=\{(0,0)^{t},(a_{n},0)^{t},(0,b_{n})^{t},\pm (a_{n},b_{n})^{t}\}, where
p_{n},
q_{n},
a_{n} and
b_{n} are positive integers for all
n\geqslant 1. If
\sup _{n\geqslant 1}\{\frac{a_{n}}{p_{n}},\frac{b_{n}}{q_{n}}\}<\infty, then the infinite convolution
\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}}=\unicode[STIX]{x1D6FF}_{M_{1}^{-1}{\mathcal{D}}_{1}}\ast \unicode[STIX]{x1D6FF}_{(M_{1}M_{2})^{-1}{\mathcal{D}}_{2}}\ast \cdots \, is a Borel probability measure (Cantor–Dust–Moran measure). In this paper, we investigate whenever there exists a discrete set
\unicode[STIX]{x1D6EC} such that
\{e^{2\unicode[STIX]{x1D70B}i\langle \unicode[STIX]{x1D706},x\rangle }:\unicode[STIX]{x1D706}\in \unicode[STIX]{x1D6EC}\} is an orthonormal basis for
L^{2}(\unicode[STIX]{x1D707}_{\{M_{n}\},\{{\mathcal{D}}_{n}\}}).