We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Reflection in a strictly convex bounded planar billiard acts on the space of oriented lines and preserves a standard area form. A caustic is a curve C whose tangent lines are reflected by the billiard to lines tangent to C. The famous Birkhoff conjecture states that the only strictly convex billiards with a foliation by closed caustics near the boundary are ellipses. By Lazutkin’s theorem, there always exists a Cantor family of closed caustics approaching the boundary. In the present paper, we deal with an open billiard, whose boundary is a strictly convex embedded (non-closed) curve $\gamma $. We prove that there exists a domain U adjacent to $\gamma $ from the convex side and a $C^\infty $-smooth foliation of $U\cup \gamma $ whose leaves are $\gamma $ and (non-closed) caustics of the billiard. This generalizes a previous result by Melrose on the existence of a germ of foliation as above. We show that there exists a continuum of above foliations by caustics whose germs at each point in $\gamma $ are pairwise different. We prove a more general version of this statement for $\gamma $ being an (immersed) arc. It also applies to a billiard bounded by a closed strictly convex curve $\gamma $ and yields infinitely many ‘immersed’ foliations by immersed caustics. For the proof of the above results, we state and prove their analogue for a special class of area-preserving maps generalizing billiard reflections: the so-called $C^{\infty }$-lifted strongly billiard-like maps. We also prove a series of results on conjugacy of billiard maps near the boundary for open curves of the above type.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.