We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A semiprime ring $R$ is called a $\ast$-ring if the factor ring $R/I$ is in the prime radical for every nonzero ideal $I$ of $R$. A long-standing open question posed by Gardner asks whether the prime radical coincides with the upper radical $U(\ast _{k})$ generated by the essential cover of the class of all $\ast$-rings. This question is related to many other open questions in radical theory which makes studying properties of $U(\ast _{k})$ worthwhile. We show that $U(\ast _{k})$ is an N-radical and that it coincides with the prime radical if and only if it is complemented in the lattice $\mathbb{L}_{N}$ of all N-radicals. Along the way, we show how to establish left hereditariness and left strongness of important upper radicals and give a complete description of all the complemented elements in $\mathbb{L}_{N}$.
The main purpose of this paper is to give a new, elementary proof of Flanigan’s theorem, which says that a given ring A has a maximal essential extension ME(A) if and only if the two-sided annihilator of A is zero. Moreover, we discuss the problem of description of ME(A) for a given right ideal A of a ring with an identity.
Let ρ be a supernilpotent radical. Let ρ* be the class of all rings A such that either A is a simple ring in ρ or the factor ring A/I is in ρ for every nonzero ideal I of A and every minimal ideal M of A is in ρ. Let be the lower radical determined by ρ* and let ρφ denote the upper radical determined by the class of all subdirectly irreducible rings with ρ-semisimple hearts. Le Roux and Heyman proved that is a supernilpotent radical with and they asked whether if ρ is replaced by β, ℒ , 𝒩 or 𝒥 , where β, ℒ , 𝒩 and 𝒥 denote the Baer, the Levitzki, the Koethe and the Jacobson radical, respectively. In the present paper we will give a negative answer to this question by showing that if ρ is a supernilpotent radical whose semisimple class contains a nonzero nonsimple * -ring without minimal ideals, then is a nonspecial radical and consequently . We recall that a prime ring A is a * -ring if A/I is in β for every .
For any class of rings it is shown that the class (M) of all rings each nonzero homomorphic image of which contains either a nonzero -ideal or an essential ideal is a radical class. If is a class of simple rings the upper radical generated by , (M), is shown to be equal to (M) where ' is the class of simple rings complementary to .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.