We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In 2005, Knutson–Vakil conjectured a puzzle rule for equivariant $K$-theory of Grassmannians. We resolve this conjecture. After giving a correction, we establish a modified rule by combinatorially connecting it to the authors’ recently proved tableau rule for the same Schubert calculus problem.
For a compact simply connected simple Lie group G with an involution α, we compute the G ⋊ ℤ/2-equivariant K-theory of G where G acts by conjugation and ℤ/2 acts either by α or by g ↦ α(g)−1. We also give a representation-theoretic interpretation of those groups, as well as of KG(G).
In this article, we begin by recalling the inversion formula for the convolution with the box spline. The equivariant cohomology and the equivariant $K$-theory with respect to a compact torus $G$ of various spaces associated to a linear action of $G$ in a vector space $M$ can both be described using some vector spaces of distributions, on the dual of the group $G$ or on the dual of its Lie algebra $\mathfrak{g}$. The morphism from $K$-theory to cohomology is analyzed, and multiplication by the Todd class is shown to correspond to the operator (deconvolution) inverting the semi-discrete convolution with a box spline. Finally, the multiplicities of the index of a $G$-transversally elliptic operator on $M$ are determined using the infinitesimal index of the symbol.
Using cyclotomic specializations of equivariant K-theory with respect to a torus action we derive congruences for discrete invariants of exceptional objects in derived categories of coherent sheaves on a class of varieties that includes Grassmannians and smooth quadrics. For example, we prove that if , where the ni's are powers of a fixed prime number p, then the rank of an exceptional object on X is congruent to ±1 modulo p.
The Kasparov groups are extended to the setting of inverse limits of G-C*-algebras, where G is assumed to be a locally compact group. The K K-product and other important features of the theory are generalized to this setting.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.