We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In previous work, the author has shown that
$\Pi ^1_1$
-induction along
$\mathbb N$
is equivalent to a suitable formalization of the statement that every normal function on the ordinals has a fixed point. More precisely, this was proved for a representation of normal functions in terms of Girard’s dilators, which are particularly uniform transformations of well orders. The present paper works on the next type level and considers uniform transformations of dilators, which are called 2-ptykes. We show that
$\Pi ^1_2$
-induction along
$\mathbb N$
is equivalent to the existence of fixed points for all 2-ptykes that satisfy a certain normality condition. Beyond this specific result, the paper paves the way for the analysis of further
$\Pi ^1_4$
-statements in terms of well ordering principles.
Harvey Friedman’s gap condition on embeddings of finite labelled trees plays an important role in combinatorics (proof of the graph minor theorem) and mathematical logic (strong independence results). In the present paper we show that the gap condition can be reconstructed from a small number of well-motivated building blocks: It arises via iterated applications of a uniform Kruskal theorem.
We show that arithmetical transfinite recursion is equivalent to a suitable formalization of the following: For every ordinal α there exists an ordinal β such that $1 + \beta \cdot \left( {\beta + \alpha } \right)$ (ordinal arithmetic) admits an almost order preserving collapse into β. Arithmetical comprehension is equivalent to a statement of the same form, with $\beta \cdot \alpha$ at the place of $\beta \cdot \left( {\beta + \alpha } \right)$. We will also characterize the principles that any set is contained in a countable coded ω-model of arithmetical transfinite recursion and arithmetical comprehension, respectively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.