We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that complete intersection log del Pezzo surfaces with amplitude one in weighted projective spaces are uniformly $K$-stable. As a result, they admit an orbifold Kähler–Einstein metric.
It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.
We introduce a weak Lefschetz-type result on Chow groups of complete intersections. As an application, we can reproduce some of the results in [P]. The purpose of this paper is not to reproduce all of [P] but rather illustrate why the aforementioned weak Lefschetz result is an interesting idea worth exploiting in itself. We hope the reader agrees.
We consider ideals in a polynomial ring that are generated by regular sequences of homogeneous polynomials and are stable under the action of the symmetric group permuting the variables. In previous work, we determined the possible isomorphism types for these ideals. Following up on that work, we now analyze the possible degrees of the elements in such regular sequences. For each case of our classification, we provide some criteria guaranteeing the existence of regular sequences in certain degrees.
It is proved that flatness of an analytic mapping germ from a complete intersection is determined by its sufficiently high jet. As a consequence, one obtains finite determinacy of complete intersections. It is also shown that flatness and openness are stable under deformations.
Regularity, complete intersection and Gorenstein properties of a local ring can be characterized by homological conditions on the canonical homomorphism into its residue field. In positive characteristic, the Frobenius endomorphism (and, more generally, any contracting endomorphism) can also be used for these characterizations. We introduce here a class of local homomorphisms, in some sense larger than all above, for which these characterizations still hold, providing an unified treatment for this class of homomorphisms.
We investigate the Hasse principle for complete intersections cut out by a quadric hypersurface and a cubic hypersurface defined over the rational numbers.
We obtain, via the formalism of tensor actions, a complete classification of the localizing subcategories of the stable derived category of any affine scheme that has hypersurface singularities or is a complete intersection in a regular scheme; in particular, this classifies the thick subcategories of the singularity categories of such rings. The analogous result is also proved for certain locally complete intersection schemes. It is also shown that from each of these classifications one can deduce the (relative) telescope conjecture.
Let $\Delta $ be a Euclidean quiver. We prove that the closures of the maximal orbits in the varieties of representations of $\Delta $ are normal and Cohen–Macaulay (even complete intersections). Moreover, we give a generalization of this result for the tame concealed-canonical algebras.
We generalize Gaeta’s theorem to the family of determinantal schemes. In other words, we show that the schemes defined by minors of a fixed size of a matrix with polynomial entries belong to the same G-biliaison class of a complete intersection whenever they have maximal possible codimension, given the size of the matrix and of the minors that define them.
We prove the unirationality of the moduli space of complex curves of genus 14. The method essentially relies on linkage of curves. In particular it is shown that a general curve of genus 14 admits a projective model D, in a six-dimensional projective space, which is linked to a general curve C of degree 14 and genus 8 by a complete intersection of quadrics. Using this property we are able to obtain, after a reasonable amount of further work, the unirationality result in the case of genus 14. Moreover, some variations of the same method, involving the Hilbert schemes of curves of very low genus, are used to obtain the same result for the known cases of genus 11, 12, 13.
In an earlier work, the authors described a mechanism for lifting monomial ideals to reduced unions of linear varieties. When the monomial ideal is Cohen–Macaulay (including Artinian), the corresponding union of linear varieties is arithmetically Cohen–Macaulay. The first main result of this paper is that if the monomial ideal is Artinian then the corresponding union is in the Gorenstein linkage class of a complete intersection (glicci). This technique has some interesting consequences. For instance, given any (d + 1)-times differentiable O-sequence H, there is a nondegenerate arithmetically Cohen–Macaulay reduced union of linear varieties with Hilbert function H which is glicci. In other words, any Hilbert function that occurs for arithmetically Cohen–Macaulay schemes in fact occurs among the glicci schemes. This is not true for licci schemes. Modifying our technique, the second main result is that any Cohen–Macaulay Borel-fixed monomial ideal is glicci. As a consequence, all arithmetically Cohen–Macaulay subschemes of projective space are glicci up to flat deformation.
The Mellin transform of the fibre integral is calculated for certain quasihomogeneous isolated complete intersection singularities (above all, unimodal singularities of the list by Giusti and Wall). We show the symmetry property of the Gauss–Manin spectra (Theorem 3.1) and shed light on the lattice structure of the poles of the Mellin transform that are expressed by means of some topological data of the singularities (Theorem 4.3, Theorem 5.2). As an application of these results, we express the Hodge number of the fibre in terms of the Gauss–Manin spectra.
For a finite morphism f : X → Y of smooth varieties such that f maps X birationally onto X′=f(X), the local equations of f are obtained at the double points which are not triple. If $\cal C$ is the conductor of X over X′, and $D = Sing(X') ⊂ X'$, $Δ ⊂ X$ are the subschemes defined by $\cal C$, then D and Δ are shown to be complete intersections at these points, provided that $\cal C$ has “the expected” codimension. This leads one to determine the depth of local rings of X′ at these double points. On the other hand, when $\cal C$ is reduced in X, it is proved that X′ is weakly normal at these points, and some global results are given. For the case of affine spaces, the local equations of X′ at these points are computed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.