We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any (Hausdorff) compact group G, denote by
$\mathrm{cp}(G)$
the probability that a randomly chosen pair of elements of G commute. We prove that there exists a finite group H such that
$\mathrm{cp}(G)= {\mathrm{cp}(H)}/{|G:F|^2}$
, where F is the FC-centre of G and H is isoclinic to F with
$\mathrm{cp}(F)=\mathrm{cp}(H)$
whenever
$\mathrm{cp}(G)>0$
. In addition, we prove that a compact group G with
$\mathrm{cp}(G)>\tfrac {3}{40}$
is either solvable or isomorphic to
$A_5 \times Z(G)$
, where
$A_5$
denotes the alternating group of degree five and the centre
$Z(G)$
of G contains the identity component of G.
For $G$ a finite non-Abelian group we write $c(G)$ for the probability that two randomly chosen elements commute and $k(G)$ for the largest integer such that any $k(G)$-colouring of $G$ is guaranteed to contain a monochromatic quadruple $(x,y,xy,yx)$ with $xy\neq yx$. We show that $c(G)\rightarrow 0$ if and only if $k(G)\rightarrow \infty$.
In parallel to the classical theory of central extensions of groups, we develop a version for extensions that preserve commutativity. It is shown that the Bogomolov multiplier is a universal object parametrizing such extensions of a given group. Maximal and minimal extensions are inspected, and a connection with commuting probability is explored. Such considerations produce bounds for the exponent and rank of the Bogomolov multiplier.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.