A locally convex space E is said to be ordered suprabarrelled if given any increasing sequence of subspaces of E covering E there is one of them which is suprabarrelled. In this paper we show that the space m0(X, Σ), where X is any set and Σ is a σ-algebra on X, is ordered suprabarrelled, given an affirmative answer to a previously raised question. We also include two applications of this result to the theory of vector measures.