We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Gamma \subset \overline {\mathbb {Q}}^*$ be a finitely generated subgroup. Denote by $\Gamma _{\mathrm {div}}$ its division group. A recent conjecture due to Rémond, related to the Zilber–Pink conjecture, predicts that the absolute logarithmic Weil height of an element of $\mathbb {Q}(\Gamma _{\mathrm {div}})^*\backslash \Gamma _{\mathrm {div}}$ is bounded from below by a positive constant depending only on $\Gamma $. In this paper, we propose a new way to tackle this problem.
Let $\Omega =\mathbb {Z}\omega _1+\mathbb {Z}\omega _2$ be a lattice in $\mathbb {C}$ with invariants $g_2,g_3$ and $\sigma _{\Omega }(z)$ the associated Weierstrass $\sigma $-function. Let $\eta _1$ and $\eta _2$ be the quasi-periods associated to $\omega _1$ and $\omega _2$, respectively. Assuming $\eta _2/\eta _1$ is a nonzero real number, we give an upper bound for the number of algebraic points on the graph of $\sigma _{\Omega }(z)$ of bounded degrees and bounded absolute Weil heights in some unbounded region of $\mathbb {C}$ in the following three cases: (i) $\omega _1$ and $\omega _2$ algebraic; (ii) $g_2$ and $g_3$ algebraic; (iii) the algebraic points are far from the lattice points.
We provide a direct proof of a Bogomolov-type statement for affine varieties V defined over function fields K of finite transcendence degree over an arbitrary field k, generalising a previous result (obtained through a different approach) of the first author in the special case when K is a function field of transcendence degree
$1$
. Furthermore, we obtain sharp lower bounds for the Weil height of the points in
$V(\overline {K})$
, which are not contained in the largest subvariety
$W\subseteq V$
defined over the constant field
$\overline {k}$
.
For a positive integer $d$ and a nonnegative number $\unicode[STIX]{x1D709}$, let $N(d,\unicode[STIX]{x1D709})$ be the number of $\unicode[STIX]{x1D6FC}\in \overline{\mathbb{Q}}$ of degree at most $d$ and Weil height at most $\unicode[STIX]{x1D709}$. We prove upper and lower bounds on $N(d,\unicode[STIX]{x1D709})$. For each fixed $\unicode[STIX]{x1D709}>0$, these imply the asymptotic formula $\log N(d,\unicode[STIX]{x1D709})\sim \unicode[STIX]{x1D709}d^{2}$ as $d\rightarrow \infty$, which was conjectured in a question at Mathoverflow [https://mathoverflow.net/questions/177206/].
Let 𝕂⊂ℂ be a number field. We show how to compute 𝕂-irrationality measures of a number ξ∉𝕂, and 𝕂-nonquadraticity measures of ξ if [𝕂(ξ):𝕂]>2. By applying the saddle point method to a family of double complex integrals, we prove ℚ(α)-irrationality measures and ℚ(α)-nonquadraticity measures of log α for several algebraic numbers α∈ℂ, improving earlier results due to Amoroso and the second-named author.
Dubickas and Smyth defined the metric Mahler measure on the multiplicative group of non-zero algebraic numbers. The definition involves taking an infimum over representations of an algebraic number $\alpha $ by other algebraic numbers. We verify their conjecture that the infimum in its definition is always achieved, and we establish its analog for the ultrametric Mahler measure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.