We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a conjectural formula for the Brumer–Stark units. Dasgupta and Kakde have shown the formula is correct up to a bounded root of unity. In this paper, we resolve the ambiguity in their result. We also remove an assumption from Dasgupta–Kakde’s result on the formula.
We consider a concrete family of
$2$
-towers
$(\mathbb {Q}(x_n))_n$
of totally real algebraic numbers for which we prove that, for each
$n$
,
$\mathbb {Z}[x_n]$
is the ring of integers of
$\mathbb {Q}(x_n)$
if and only if the constant term of the minimal polynomial of
$x_n$
is square-free. We apply our characterization to produce new examples of monogenic number fields, which can be of arbitrary large degree under the ABC-Conjecture.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of
$\mathbb {Z}_{S}$
-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod
$\ell $
representations of the absolute Galois group of L, we prove that the same holds also for the
$\mathcal {O}_{L,S}$
-points.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.