In this paper, the authors characterize second-order Sobolev spaces   ${{W}^{2,p}}({{\mathbb{R}}^{n}})$ , with
 ${{W}^{2,p}}({{\mathbb{R}}^{n}})$ , with   $p\,\in \,[2,\,\infty )$  and
 $p\,\in \,[2,\,\infty )$  and   $n\,\in \,\mathbb{N}\,\text{or}\,p\,\in \,(1,\,2)\,\text{and}\,n\,\in \,\left\{ 1,\,2,\,3 \right\}$ , via the Lusin area function and the Littlewood–Paley
 $n\,\in \,\mathbb{N}\,\text{or}\,p\,\in \,(1,\,2)\,\text{and}\,n\,\in \,\left\{ 1,\,2,\,3 \right\}$ , via the Lusin area function and the Littlewood–Paley   $g_{\text{ }\!\!\lambda\!\!\text{ }}^{*}$ -function in terms of ball means.
 $g_{\text{ }\!\!\lambda\!\!\text{ }}^{*}$ -function in terms of ball means.