We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents a scheme of THz generation by nonlinear photomixing of two cosh-Gaussian lasers pulses having different frequencies (ω1, ω2) and wave numbers $(\vec k_1, \vec k_2 )$ and same electrical field amplitude in a corrugated plasma embedded with transverse static magnetic field. Cosh-Gaussian laser pulses have steep gradient in intensity profile along with wider cross-section, which exerts a stronger nonlinear ponderomotive force at ω1 − ω2 and $\vec k_1 - \vec k_2 $ on plasma electrons imparting a nonlinear oscillatory velocity to plasma electrons. Oscillatory plasma electrons couple with the density ripple n′ = nα0eiαx to produce a nonlinear current, which is responsible for resonant THz radiation at frequency $\sim\left( {{\rm \omega} _{\rm c}^2 + {\rm \omega} _{\rm p}^2} \right)^{1/2} $. The amplitude, efficiency and beam quality of THz radiation can be optimized by choosing proper corrugation factor (α of the plasma), applied magnetic field (ωc), decentered parameter (b), and beam width parameter a0 of cosh-Gaussian lasers. An efficiency of $\sim\!10^{ - 2} - 10^{ - 1} $ is achieved for laser electric field E = 3.2 × 109 V/cm.
Resonant THz radiation generation is proposed by beating of two spatial-triangular laser pulses of different frequencies (ω1, ω2) and wave numbers $\lpar \vec k_1 \comma \; \vec k_2 \rpar $ in plasma having external static magnetic field. Laser pulses co-propagating perpendicular to a dc magnetic field exert a nonlinear ponderomotive force on plasma electrons, imparting them an oscillatory velocity with finite transverse and longitudinal components. Oscillatory plasma electrons couple with periodic density ripples n′ = nq0eiqz to produce a nonlinear current, i.e., responsible for resonantly driving terahertz radiation at $\lpar {\rm \omega} = {\rm \omega} _1 - {\rm \omega} _2 \comma \; \vec k = \vec k_1 - \vec k_2 + \vec q\rpar $. Effects of THz wave frequency, laser beam width, density ripples, and applied magnetic field are studied for the efficient THz radiation generation. The frequency and amplitude of THz radiation were observed to be better tuned by varying dc magnetic field strength and parameters of density ripples (amplitude and periodicity). An efficiency about 0.02 is achieved for laser intensity of 2 × 1015 W/cm2 in a plasma having density ripples about 30%, plasma frequency about 1 THz and magnetic field about 100 kG.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.