Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:35:05.579Z Has data issue: false hasContentIssue false

Tunable terahertz radiation generation by nonlinear photomixing of cosh-Gaussian laser pulses in corrugated magnetized plasma

Published online by Cambridge University Press:  13 March 2017

P. Varshney*
Affiliation:
Laser Plasma Division, Raja Ramanna Centre of Advance Technology, Indore-452013, Madhya Pradesh, India
V. Sajal
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India
A. Upadhyay
Affiliation:
Laser Plasma Division, Raja Ramanna Centre of Advance Technology, Indore-452013, Madhya Pradesh, India
J. A. Chakera
Affiliation:
Laser Plasma Division, Raja Ramanna Centre of Advance Technology, Indore-452013, Madhya Pradesh, India
R. Kumar
Affiliation:
Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India
*
*Address correspondence and reprint requests to: Prateek Varshney, Laser Plasma Division, Raja Ramanna Centre of Advance Technology, Indore-452013, Madhya Pradesh, India. E-mail: varshneyprateek28@yahoo.com

Abstract

This paper presents a scheme of THz generation by nonlinear photomixing of two cosh-Gaussian lasers pulses having different frequencies (ω1, ω2) and wave numbers $(\vec k_1, \vec k_2 )$ and same electrical field amplitude in a corrugated plasma embedded with transverse static magnetic field. Cosh-Gaussian laser pulses have steep gradient in intensity profile along with wider cross-section, which exerts a stronger nonlinear ponderomotive force at ω1 − ω2 and $\vec k_1 - \vec k_2 $ on plasma electrons imparting a nonlinear oscillatory velocity to plasma electrons. Oscillatory plasma electrons couple with the density ripple n′ = nα0eiαx to produce a nonlinear current, which is responsible for resonant THz radiation at frequency $\sim\left( {{\rm \omega} _{\rm c}^2 + {\rm \omega} _{\rm p}^2} \right)^{1/2} $. The amplitude, efficiency and beam quality of THz radiation can be optimized by choosing proper corrugation factor (α of the plasma), applied magnetic field (ωc), decentered parameter (b), and beam width parameter a0 of cosh-Gaussian lasers. An efficiency of $\sim\!10^{ - 2} - 10^{ - 1} $ is achieved for laser electric field E = 3.2 × 109 V/cm.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abo-Bakr, M., Feikes, J., Holldack, K., Kuske, P., Peatman, W.B., Schade, U., Wustefeld, G. & Hübers, H.W. (2003). Brilliant, coherent far-infrared (THz) synchrotron radiation. Phys. Rev. Lett. 90, 094801.CrossRefGoogle ScholarPubMed
Antonsen, T.M., Palastra, J.J. & Milchberg, H.M. (2007). Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14, 033107.CrossRefGoogle Scholar
Bhasin, L. & Tripathi, V.K. (2011). Terahertz generation from laser filaments in the presence of a static electric field in a plasma. Phys. Plasma 18, 123106.CrossRefGoogle Scholar
Carr, G.L., Martin, M.C., McKinney, W.R., Jordan, K., Neil, G.R. & Williams, G.P. (2002). High-power terahertz radiation from relativistic electrons. Nature (Lond.) 420, 153.CrossRefGoogle ScholarPubMed
Dragoman, D. & Dragoman, M. (2004). Terahertz fields and applications. Progr. Quantum Electron. 28, 1.Google Scholar
Hamster, H., Sullivan, A., Gordon, S. & Falcone, R.W. (1994). Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671.CrossRefGoogle ScholarPubMed
Hamster, H., Sullivan, A., Gordon, S., White, W. & Falcone, R.W. (1993). Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 2725.CrossRefGoogle ScholarPubMed
Hazra, S., Chini, T.K., Sanyal, M.K., Grenzer, J. & Pietsch, U. (2004). Ripple structure of crystalline layers in ion-beam-induced Si wafers. Phys. Rev. B 70, 121307.CrossRefGoogle Scholar
Kuo, C.-C., Pai, C.-H., Lin, M.-W., Lee, K.-H., Lin, J.-Y., Wang, J. & Chen, S.-Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98, 033901.CrossRefGoogle ScholarPubMed
Leemans, W.P., Tilborg, J.V., Faure, J., Geddes, C.G.R., Toth, C., Schroeder, C.B., Esarey, E., Fubioni, G. & Dugan, G. (2004). Terahertz radiation from laser accelerated electron bunches. Phys. Plasmas 11, 2899.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2009). Tunable terahertz radiation from a tunnel ionized magnetized plasma cylinder. J. Appl. Phys. 105, 013313.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Nishida, Y. (2011). Terahertz radiation generation by beating of two spatial-Gaussian lasers. Phys. Lett. A 375, 1191.Google Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2012 b). Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phys. Rev. E 85, 016401.CrossRefGoogle ScholarPubMed
Malik, A.K., Singh, K.P. & Sajal, V. (2014). Highly focused and efficient terahertz radiation generation by photo-mixing of lasers in plasma in the presence of magnetic field. Phys. Plasmas 21, 065736.CrossRefGoogle Scholar
Malik, H.K. (2015). Terahertz radiation generation by lasers with remarkable efficiency in electron positron plasma. Phys. Lett. A 379, 28262829.CrossRefGoogle Scholar
Malik, H.K. & Malik, A.K. (2011). Tunable and collimated terahertz radiation generation by femtosecond laser pulses. Appl. Phys. Lett. 99, 251101.CrossRefGoogle Scholar
Malik, H.K. & Malik, A.K. (2012). Strong and collimated terahertz radiation by super-Gaussian lasers. Europhys. Lett. 100, 45001.CrossRefGoogle Scholar
Malik, H.K. & Malik, A.K. (2013). Tuning and focusing of Terahertz radiation by dc magnetic field in a laser beating process. IEEE J. Quantum Electron. 49, 232.CrossRefGoogle Scholar
Penano, J., Sprangle, P., Hafizi, B., Gordon, D. & Serafim, P. (2010). Terahertz generation in plasmas using two-color laser pulses. Phys. Rev. E 81, 026407.CrossRefGoogle ScholarPubMed
Schillinger, H. & Sauerbrey, R. (1999). Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses. Appl. Phys. B: Lasers Opt. 68, 753.CrossRefGoogle Scholar
Schroeder, C.B., Esarey, E., Tilborg, J.V. & Leemans, W.P. (2004). Theory of coherent transition radiation generated at a plasma-vacuum interface. Phys. Rev. E 69, 016501.Google Scholar
Siegel, P.H. (2004). Terahertz technology in biology and medicine, Microwave Symposium Digest, IEEE MTT-S Int., 1575.Google Scholar
Singh, D. & Malik, H.K. (2014). Terahertz generation by mixing of two super Gaussian laser beams in collisional plasma. Phys. Plasma 21, 083105.CrossRefGoogle Scholar
Singh, D. & Malik, H.K. (2015). Enhancement of terahertz emission in magnetized collisional plasma. Plasma Sources Sci. Technol. 24, 045001.CrossRefGoogle Scholar
Singh, D. & Malik, H.K. (2016). Emission of strong terahertz pulses from laser wakefields in weakly coupled plasma. Nucl. Instrum. Method Phys. Res. A 829, 403407.CrossRefGoogle Scholar
Singh, M., Singh, R.K. & Sharma, R. (2013). THz generation by cosh-Gaussian lasers in a rippled density plasma. Europhys. Lett. 104, 35002.CrossRefGoogle Scholar
Sizov, F. (2010). THz radiation sensors. Opto-Electron. Rev. 18, 10.Google Scholar
Sprangle, P., Penano, J., Hafizi, B. & Kapetanakos, C. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Review E. 69, 066415.CrossRefGoogle ScholarPubMed
Tripathi, D., Bhasin, L., Uma, R. & Tripathi, V. (2010). Terahertz generation by an amplitude-modulated Gaussian laser beam in a rippled density plasma column. Phys. Scr. 82, 035504.Google Scholar
Varshney, P., Sajal, V., Chauhan, P., Kumar, R. & Sharma, N.K. (2014). Effects of transverse static electric field on terahertz radiation generation by beating of two transversely modulated Gaussian laser beams in a plasma. Laser Part. Beams 32, 375.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extra-ordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337.CrossRefGoogle Scholar
Varshney, P., Sajal, V., Sharma, N.K., Chauhan, P. & Kumar, R. (2015). Strong terahertz radiation generation by beating of two x-mode spatial triangular lasers in a magnetized plasma. Laser Part. Beams 33, 51.CrossRefGoogle Scholar
Wu, H.C., Sheng, Z.M. & Zhang, J. (2008). Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator. Phys. Rev. E 77, 046405.CrossRefGoogle ScholarPubMed
Yoshii, J., Lai, C., Katsouleas, T., Joshi, C. & Mori, W. (1997). Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79, 4194.CrossRefGoogle Scholar