We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More precisely, let $\mathbb{C}(X(N))$ be the field of meromorphic functions on the modular curve $X(N)$ of level $N$. We construct a completely free element in the extension $\mathbb{C}(X(N))/\mathbb{C}(X(1))$ by means of Siegel functions.
It is well known that every elliptic curve over the rationals admits a parametrization by means of modular functions. In this short note, we show that only finitely many elliptic curves over $\mathbf{Q}$ can be parametrized by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures. Further, we give the list of all elliptic curves $E$ of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of $E$. Finally, we raise several open questions.
In a recent paper, Soundararajan has proved the quantum unique ergodicity conjecture by getting a suitable estimate for the second order moment of the so-called ‘Hecke multiplicative’ functions. In the process of proving this he has developed many beautiful ideas. In this paper we generalize his arguments to a general $k$th power and provide an analogous estimate for the $k$th power moment of the Hecke multiplicative functions. This may be of general interest.
Let f be a non-zero cusp form with real Fourier coefficients a(n) (n ≥ 1) of positive real weight k and a unitary multiplier system v on a subgroup Γ ⊂ SL2(ℝ) that is finitely generated and of Fuchsian type of the first kind. Then, it is known that the sequence (a(n))(n ≥ 1) has infinitely many sign changes. In this short note, we generalise the above result to the case of entire modular integrals of non-positive integral weight k on the group Γ0*(N) (N ∈ ℕ) generated by the Hecke congruence subgroup Γ0(N) and the Fricke involution provided that the associated period functions are polynomials.