We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Parameter learning is a crucial task in the field of Statistical Relational Artificial Intelligence: given a probabilistic logic program and a set of observations in the form of interpretations, the goal is to learn the probabilities of the facts in the program such that the probabilities of the interpretations are maximized. In this paper, we propose two algorithms to solve such a task within the formalism of Probabilistic Answer Set Programming, both based on the extraction of symbolic equations representing the probabilities of the interpretations. The first solves the task using an off-the-shelf constrained optimization solver while the second is based on an implementation of the Expectation Maximization algorithm. Empirical results show that our proposals often outperform existing approaches based on projected answer set enumeration in terms of quality of the solution and in terms of execution time.
In order to take on arbitrary geometries, shape-changing arrays must introduce gaps between their elements. To enhance performance, this unused area can be filled with meta-material inspired switched passive networks on flexible sheets in order to compensate for the effects of increased spacing. These flexible meta-gaps can easily fold and deploy when the array changes shape. This work investigates the promise of meta-gaps through the measurement of a 5-by-5 λ-spaced array with 40 meta-gap sheets and 960 switches. The optimization and measurement problems associated with such a high-dimensional phased array are discussed. Simulated and in-situ optimization experiments are conducted to examine the differential performance of metaheuristic algorithms and characterize the underlying optimization problem. Measurement results demonstrate that in our implementation meta-gaps increase the average main beam power within the field of view (FoV) by 0.46 dB, suppress the average side lobe level within the FoV by 2 dB, and enhance the field-of-view by 23.5∘ compared to a ground-plane backed array.
The new software package OpenMx 2.0 for structural equation and other statistical modeling is introduced and its features are described. OpenMx is evolving in a modular direction and now allows a mix-and-match computational approach that separates model expectations from fit functions and optimizers. Major backend architectural improvements include a move to swappable open-source optimizers such as the newly written CSOLNP. Entire new methodologies such as item factor analysis and state space modeling have been implemented. New model expectation functions including support for the expression of models in LISREL syntax and a simplified multigroup expectation function are available. Ease-of-use improvements include helper functions to standardize model parameters and compute their Jacobian-based standard errors, access to model components through standard R $ mechanisms, and improved tab completion from within the R Graphical User Interface.
The relationship between variables in applied and experimental research is often investigated by the use of extreme (i.e., upper and lower) groups. Recent analytical work has provided an extreme groups procedure that is more powerful than the standard correlational approach for all values of the correlation and extreme group size. The present article provides procedures to optimize power by determining the relative number of subjects to use in each of two stages of data collection given a fixed testing budget.
Brokken has proposed a method for orthogonal rotation of one matrix such that its columns have a maximal sum of congruences with the columns of a target matrix. This method employs an algorithm for which convergence from every starting point is not guaranteed. In the present paper, an iterative majorization algorithm is proposed which is guaranteed to converge from every starting point. Specifically, it is proven that the function value converges monotonically, and that the difference between subsequent iterates converges to zero. In addition to the better convergence properties, another advantage of the present algorithm over Brokken's one is that it is easier to program. The algorithms are compared on 80 simulated data sets, and it turned out that the new algorithm performed well in all cases, whereas Brokken's algorithm failed in almost half the cases. The derivation of the algorithm is given in full detail because it involves a series of inequalities that can be of use to derive similar algorithms in different contexts.
An examination is made concerning the utility and design of studies comparing nonmetric scaling algorithms and their initial configurations, as well as the agreement between the results of such studies. Various practical details of nonmetric scaling are also considered.
Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals’ natural energetic expenditure during walking. The objective function combines information from electromyography (EMG) variables such as intensity and muscle synergies. First, we demonstrate the similarity of the proposed objective function, calculated offline, to the EC during walking. Second, we minimize and validate the EMG-based objective function using an online Bayesian optimization algorithm. The walking step frequency is chosen as the parameter to optimize in both offline and online approaches in order to simplify experiments and facilitate comparisons with related research. Compared to existing studies that use EC as the objective function, results demonstrated that the optimization of the presented objective function reduced the number of iterations and, when compared with gradient descent optimization strategies, also reduced convergence time. Moreover, the algorithm effectively converges toward an optimal step frequency near the user’s preferred frequency, positively influencing EC reduction. The good correlation between the estimated objective function and measured EC highlights its consistency and reliability. Thus, the proposed objective function could potentially optimize lower limb exoskeleton assistance and improve user performance and human–robot interaction without the need for challenging respiratory gas measurements.
Maximise student engagement and understanding of matrix methods in data-driven applications with this modern teaching package. Students are introduced to matrices in two preliminary chapters, before progressing to advanced topics such as the nuclear norm, proximal operators and convex optimization. Highlighted applications include low-rank approximation, matrix completion, subspace learning, logistic regression for binary classification, robust PCA, dimensionality reduction and Procrustes problems. Extensively classroom-tested, the book includes over 200 multiple-choice questions suitable for in-class interactive learning or quizzes, as well as homework exercises (with solutions available for instructors). It encourages active learning with engaging 'explore' questions, with answers at the back of each chapter, and Julia code examples to demonstrate how the mathematics is actually used in practice. A suite of computational notebooks offers a hands-on learning experience for students. This is a perfect textbook for upper-level undergraduates and first-year graduate students who have taken a prior course in linear algebra basics.
This paper deals with the optimization of a new redundant spherical parallel manipulator (New SPM). This manipulator consists of two spherical five-bar mechanisms connected by the end-effector, providing three degrees of freedom, and has an unlimited self-rotation capability. Three optimization procedures based on the genetic algorithm method were carried out to improve the dexterity of the New SPM. The first and the second optimizations were applied to a symmetric New SPM structure, while the third was applied to an asymmetric New SPM structure. In both cases, the optimization was performed using an objective function defined by the quadratic sum of link angles. In addition, certain criteria and constraints were implemented. The obtained results demonstrate significant improvements in the dexterity of the New SPM and its capability of an unlimited self-rotate in an extended workspace. A comparison of the self-rotation performances between the classical 3-RRR SPM (R for revolute joint) and the New SPM is also presented.
We devise schemes for producing, in the least possible time, p identical objects with n agents that work at differing speeds. This involves halting the process to transfer production across agent types. For the case of two types of agent, we construct schemes based on the Euclidean algorithm that seeks to minimize the number of pauses in production.
Hydrologic modeling with particular focus on model calibration. Beginning with a short discussion of hydrologic models, the chapter goes on to discussing model calibration through optimization, goodness-of-fit indices, measures of model performance, optimization methods, model validation, and sensitivity analysis. The chapter is concluded with a discussion of optimization models included in HEC-HMS.
This chapter discusses the application of operations research models in the energy industry. The applications that are covered include linear programming in the economic dispatch problem, mixed integer programming in unit commitment, nonlinear programming in the alternating current optimal power flow, stochastic programming in hydrothermal scheduling, and various other classes of mathematical programs. The capacity expansion problem is then analyzed through an analytical approach that relies on load duration curves and screening curves. The model is used to highlight the missing money problem in energy only markets with price caps, introduces the notion of competitive equilibrium, and discusses the distinction between short-term and long-term competitive equilibrium.
Risk measurement and econometrics are the two pillars of actuarial science. Unlike econometrics, risk measurement allows taking into account decision-makers’ risk aversion when analyzing the risks. We propose a hybrid model that captures decision-makers’ regression-based approach to study risks, focusing on explanatory variables while paying attention to risk severity. Our model considers different loss functions that quantify the severity of the losses that are provided by the risk manager or the actuary. We present an explicit formula for the regression estimators for the proposed risk-based regression problem and study the proposed results. Finally, we provide a numerical study of the results using data from the insurance industry.
In the field of laparoscopic surgery, research is currently focusing on the development of new robotic systems to assist practitioners in complex operations, improving the precision of their medical gestures. In this context, the performance of these robotic platforms can be conditioned by various factors, such as the robot’s accessibility and dexterity in the task workspace. In this paper, we present a new strategy for improving the kinematic and dynamic performance of a 7-degrees of freedom robot-assisted camera-holder system for laparoscopic surgery. This approach involves the simultaneous optimization of the robot base placement and the laparoscope mounting orientation. To do so, a general robot capability representation approach is implemented in an innovative multiobjective optimization algorithm. The obtained results are first evaluated in simulation and then validated experimentally by comparing the robot’s performances implementing both the existing and the optimized solution. The optimization result led to a 2% improvement in the accessibility index and a 14% enhancement in manipulability. Furthermore, the dynamic performance criteria resulted in a substantial 43% reduction in power consumption.
Finite Cartesian products of operators play a central role in monotone operator theory and its applications. Extending such products to arbitrary families of operators acting on different Hilbert spaces is an open problem, which we address by introducing the Hilbert direct integral of a family of monotone operators. The properties of this construct are studied, and conditions under which the direct integral inherits the properties of the factor operators are provided. The question of determining whether the Hilbert direct integral of a family of subdifferentials of convex functions is itself a subdifferential leads us to introducing the Hilbert direct integral of a family of functions. We establish explicit expressions for evaluating the Legendre conjugate, subdifferential, recession function, Moreau envelope, and proximity operator of such integrals. Next, we propose a duality framework for monotone inclusion problems involving integrals of linearly composed monotone operators and show its pertinence toward the development of numerical solution methods. Applications to inclusion and variational problems are discussed.
The optimization of mechanical behavior in safety systems during crash scenarios consistently poses challenges in vehicle development. Hence, a reinforcement learning-based approach for optimizing restraint systems in frontal impacts is proposed. The trained agent, which adjusts five parameters simultaneously, is capable of minimizing loads on a seen and unseen anthropomorphic test device on the co-driver position and is thus able of transferring knowledge. A hundred times higher rate of convergence to reach a similar optimum compared to a global optimization algorithm has been achieved.
The increase in Electrical and Electronic Equipment (EEE) usage in various sectors has given rise to repair and maintenance units. Disassembly of parts requires proper planning, which is done by the Disassembly Sequence Planning (DSP) process. Since the manual disassembly process has various time and labor restrictions, it requires proper planning. Effective disassembly planning methods can encourage the reuse and recycling sector, resulting in reduction of raw-materials mining. An efficient DSP can lower the time and cost consumption. To address the challenges in DSP, this research introduces an innovative framework based on Q-Learning (QL) within the domain of Reinforcement Learning (RL). Furthermore, an Enhanced Simulated Annealing (ESA) algorithm is introduced to improve the exploration and exploitation balance in the proposed RL framework. The proposed framework is extensively evaluated against state-of-the-art frameworks and benchmark algorithms using a diverse set of eight products as test cases. The findings reveal that the proposed framework outperforms benchmark algorithms and state-of-the-art frameworks in terms of time consumption, memory consumption, and solution optimality. Specifically, for complex large products, the proposed technique achieves a remarkable minimum reduction of 60% in time consumption and 30% in memory usage compared to other state-of-the-art techniques. Additionally, qualitative analysis demonstrates that the proposed approach generates sequences with high fitness values, indicating more stable and less time-consuming disassembles. The utilization of this framework allows for the realization of various real-world disassembly applications, thereby making a significant contribution to sustainable practices in EEE industries.
This chapter focuses on the accelerating pace and unprecedented reach of technological innovation. Ethical issues, evident, for example, in the impacts of social media and the burgeoning applications of artificial intelligence, raise questions as to how technological advances align with and alter human values and ways of life. Education is pivotal where such questions are concerned, but its role may be constrained by technologically amplified forms of cultural and temporal parochialism, and technologically enhanced efforts optimize education in terms of narrowly configured outcomes aligned with prevailing forms of meritocratic order. Alternatively, evolving forms of educational practice may provide, in the form of ethically responsive, intergenerational practical deliberation, a counterweight to the cascading social and cultural influence of emerging technology.
Edited by
Jeremy Koster, Max Planck Institute for Evolutionary Anthropology, Leipzig,Brooke Scelza, University of California, Los Angeles,Mary K. Shenk, Pennsylvania State University
Among the diversity of perspectives for studying the nexus of evolution and human behavior, human behavioral ecology (HBE) emerged as the study of the adaptive nature of behavior as a function of socioecological context. This volume explores the history and diversification of HBE, a field which has grown considerably in the decades since its emergence in the 1970s. At its core, the principles of HBE have remained a clear and cogent way to derive predictions about the adaptive function of behavior, even as the questions and methods of the discipline have evolved to be more interdisciplinary and more synergistic with other fields in the evolutionary social sciences. This introductory chapter covers core concepts, including methodological individualism, conditional strategies, and optimization. The chapter then provides an overview of the state of the field, including a summary of current research topics, areas, and methods. The chapter concludes by emphasizing the integral role that human behavioral ecology continues to play in deepening scholarly understandings of human behavior.
This paper presents the design and validation of a wearable shoulder exoskeleton robot intended to serve as a platform for assistive controllers that can mitigate the risk of musculoskeletal disorders seen in workers. The design features a four-bar mechanism that moves the exoskeleton’s center of mass from the upper shoulders to the user’s torso, dual-purpose gravity compensation mechanism located inside the four-bar’s linkages that supports the full gravitational loading from the exoskeleton with partial user’s arm weight compensation, and a novel 6 degree-of-freedom (DoF) compliant misalignment compensation mechanism located between the end effector and the user’s arm to allow shoulder translation while maintaining control of the arm’s direction. Simulations show the four-bar design lowers the center of mass by $ 11 $ cm and the kinematic chain can follow the motion of common upper arm trajectories. Experimental tests show the gravity compensation mechanism compensates gravitational loading within $ \pm 0.5 $ Nm over the range of shoulder motion and the misalignment compensation mechanism has the desired 6 DoF stiffness characteristics and range of motion to adjust for shoulder center translation. Finally, a workspace admittance controller was implemented and evaluated showing the system is capable of accurately reproducing simulated impedance behavior with transparent low-impedance human operation.