No CrossRef data available.
Published online by Cambridge University Press: 16 May 2024
The optimization of mechanical behavior in safety systems during crash scenarios consistently poses challenges in vehicle development. Hence, a reinforcement learning-based approach for optimizing restraint systems in frontal impacts is proposed. The trained agent, which adjusts five parameters simultaneously, is capable of minimizing loads on a seen and unseen anthropomorphic test device on the co-driver position and is thus able of transferring knowledge. A hundred times higher rate of convergence to reach a similar optimum compared to a global optimization algorithm has been achieved.