We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be a smooth geometrically connected projective curve over the field of fractions of a discrete valuation ring $R$, and $\mathfrak {m}$ a modulus on $X$, given by a closed subscheme of $X$ which is geometrically reduced. The generalized Jacobian $J_\mathfrak {m}$ of $X$ with respect to $\mathfrak {m}$ is then an extension of the Jacobian of $X$ by a torus. We describe its Néron model, together with the character and component groups of the special fibre, in terms of a regular model of $X$ over $R$. This generalizes Raynaud's well-known description for the usual Jacobian. We also give some computations for generalized Jacobians of modular curves $X_0(N)$ with moduli supported on the cusps.
In this note, we prove a formula for the cancellation exponent $k_{v,n}$ between division polynomials $\psi _n$ and $\phi _n$ associated with a sequence $\{nP\}_{n\in \mathbb {N}}$ of points on an elliptic curve $E$ defined over a discrete valuation field $K$. The formula greatly generalizes the previously known special cases and treats also the case of non-standard Kodaira types for non-perfect residue fields.
We consider the rigid monoidal category of character sheaves on a smooth commutative group scheme $G$ over a finite field $k$, and expand the scope of the function-sheaf dictionary from connected commutative algebraic groups to this setting. We find the group of isomorphism classes of character sheaves on $G$, and show that it is an extension of the group of characters of $G(k)$ by a cohomology group determined by the component group scheme of $G$. We also classify all morphisms in the category character sheaves on $G$. As an application, we study character sheaves on Greenberg transforms of locally finite type Néron models of algebraic tori over local fields. This provides a geometrization of quasicharacters of $p$-adic tori.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.