We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on a 2D magnetohydrodynamic system with only horizontal dissipation in the domain $\Omega = \mathbb {T}\times \mathbb {R}$ with $\mathbb {T}=[0,\,1]$ being a periodic box. The goal here is to understand the stability problem on perturbations near the background magnetic field $(1,\,0)$. Due to the lack of vertical dissipation, this stability problem is difficult. This paper solves the desired stability problem by simultaneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the coupling between the velocity and the magnetic fields, and the strong Poincaré type inequalities for the oscillation part of the solution, namely the difference between the solution and its horizontal average. In addition, the oscillation part of the solution is shown to converge exponentially to zero in $H^{1}$ as $t\to \infty$. As a consequence, the solution converges to its horizontal average asymptotically.
In this paper we propose a development of the finite difference method, called the tailored finite point method, for solving steady magnetohydrodynamic (MHD) duct flow problems with a high Hartmann number. When the Hartmann number is large, the MHD duct flow is convection-dominated and thus its solution may exhibit localized phenomena such as the boundary layer. Most conventional numerical methods can not efficiently solve the layer problem because they are lacking in either stability or accuracy. However, the proposed tailored finite point method is capable of resolving high gradients near the layer regions without refining the mesh. Firstly, we devise the tailored finite point method for the scalar inhomogeneous convection-diffusion problem, and then extend it to the MHD duct flow which consists of a coupled system of convection-diffusion equations. For each interior grid point of a given rectangular mesh, we construct a finite-point difference operator at that point with some nearby grid points, where the coefficients of the difference operator are tailored to some particular properties of the problem. Numerical examples are provided to show the high performance of the proposed method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.