We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter our goal is to determine the achievable region of the exponent pairs for the type-I and type-II error probabilities. Our strategy is to apply the achievability and (strong) converse bounds from Chapter 14 in conjunction with the large-deviations theory developed in Chapter 15. After characterizing the full tradeoff we will discuss an adaptive setting of hypothesis testing where, instead of committing ahead of time to testing on the basis of n samples, one can decide adaptively whether to request more samples or stop. We will find out that adaptivity greatly increases the region of achievable error exponents and will learn about the sequential probability ratio test (SPRT) of Wald. In the closing sections we will discuss relations to more complicated settings in hypothesis testing: one with composite hypotheses and one with communication constraints.
In this chapter we introduce the problem of analyzing low-probability events, known as large deviation theory. It is usually solved by computing moment-generating functions and Fenchel-Legendre conjugation. It turns out, however, that these steps can be interpreted information-theoretically in terms of information projection. We show how to solve information projection in a special case of linear constraints, connecting the solution to exponential families.
This paper investigates the precise large deviations of the net loss process in a two-dimensional risk model with consistently varying tails and dependence structures, and gives some asymptotic formulas which hold uniformly for all x varying in t-intervals. The study is among the initial efforts to analyze potential risk via large deviation results for the net loss process of the two-dimensional risk model, and can provide a novel insight to assess the operation risk in a long run by fully considering the premium income factors of the insurance company.
This paper considers the family of invariant measures of Markovian mean-field interacting particle systems on a countably infinite state space and studies its large deviation asymptotics. The Freidlin–Wentzell quasipotential is the usual candidate rate function for the sequence of invariant measures indexed by the number of particles. The paper provides two counterexamples where the quasipotential is not the rate function. The quasipotential arises from finite-horizon considerations. However, there are certain barriers that cannot be surmounted easily in any finite time horizon, but these barriers can be crossed in the stationary regime. Consequently, the quasipotential is infinite at some points where the rate function is finite. After highlighting this phenomenon, the paper studies some sufficient conditions on a class of interacting particle systems under which one can continue to assert that the Freidlin–Wentzell quasipotential is indeed the rate function.
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fills the gap between a convergence in probability of some random variables to a constant, and a weak convergence to a centered Gaussian distribution (when such random variables are properly centered and rescaled). We talk about noncentral moderate deviations when the weak convergence is towards a non-Gaussian distribution. In this paper we prove a noncentral moderate deviation result for the bivariate sequence of sums and maxima of independent and identically distributed random variables bounded from above. We also prove a result where the random variables are not bounded from above, and the maxima are suitably normalized. Finally, we prove a moderate deviation result for sums of partial minima of independent and identically distributed exponential random variables.
The goal of this paper is to go further in the analysis of the behavior of the number of descents in a random permutation. Via two different approaches relying on a suitable martingale decomposition or on the Irwin–Hall distribution, we prove that the number of descents satisfies a sharp large-deviation principle. A very precise concentration inequality involving the rate function in the large-deviation principle is also provided.
We consider the simple random walk on the d-dimensional lattice $\mathbb{Z}^d$ ($d \geq 1$), traveling in potentials which are Bernoulli-distributed. The so-called Lyapunov exponent describes the cost of traveling for the simple random walk in the potential, and it is known that the Lyapunov exponent is strictly monotone in the parameter of the Bernoulli distribution. Hence the aim of this paper is to investigate the effect of the potential on the Lyapunov exponent more precisely, and we derive some Lipschitz-type estimates for the difference between the Lyapunov exponents.
We study the large-volume asymptotics of the sum of power-weighted edge lengths $\sum_{e \in E}|e|^\alpha$ in Poisson-based spatial random networks. In the regime $\alpha > d$, we provide a set of sufficient conditions under which the upper-large-deviation asymptotics are characterized by a condensation phenomenon, meaning that the excess is caused by a negligible portion of Poisson points. Moreover, the rate function can be expressed through a concrete optimization problem. This framework encompasses in particular directed, bidirected, and undirected variants of the k-nearest-neighbor graph, as well as suitable $\beta$-skeletons.
Large deviations of the largest and smallest eigenvalues of $\mathbf{X}\mathbf{X}^\top/n$ are studied in this note, where $\mathbf{X}_{p\times n}$ is a $p\times n$ random matrix with independent and identically distributed (i.i.d.) sub-Gaussian entries. The assumption imposed on the dimension size p and the sample size n is $p=p(n)\rightarrow\infty$ with $p(n)={\mathrm{o}}(n)$. This study generalizes one result obtained in [3].
We consider a class of processes describing a population consisting of k types of individuals. The process is almost surely absorbed at the origin within finite time, and we study the expected time taken for such extinction to occur. We derive simple and precise asymptotic estimates for this expected persistence time, starting either from a single individual or from a quasi-equilibrium state, in the limit as a system size parameter N tends to infinity. Our process need not be a Markov process on $ {\mathbb Z}_+^k$; we allow the possibility that individuals’ lifetimes may follow more general distributions than the exponential distribution.
We present several formulations of the large deviation principle for empirical measures in the V topology, depending on the initial distribution. The case V = B(S) is further studied.
We study large deviations for general vector-valued additive functionals. The relationship between large deviations for empirical measures and large deviations for additive functionals is discussed.
This book studies the large deviations for empirical measures and vector-valued additive functionals of Markov chains with general state space. Under suitable recurrence conditions, the ergodic theorem for additive functionals of a Markov chain asserts the almost sure convergence of the averages of a real or vector-valued function of the chain to the mean of the function with respect to the invariant distribution. In the case of empirical measures, the ergodic theorem states the almost sure convergence in a suitable sense to the invariant distribution. The large deviation theorems provide precise asymptotic estimates at logarithmic level of the probabilities of deviating from the preponderant behavior asserted by the ergodic theorems.
In this work the
$\ell_q$
-norms of points chosen uniformly at random in a centered regular simplex in high dimensions are studied. Berry–Esseen bounds in the regime
$1\leq q < \infty$
are derived and complemented by a non-central limit theorem together with moderate and large deviations in the case where
$q=\infty$
. An application to the intersection volume of a regular simplex with an
$\ell_p^n$
-ball is also carried out.
Let
$(X_k)_{k\geq 0}$
be a stationary and ergodic process with joint distribution
$\mu $
, where the random variables
$X_k$
take values in a finite set
$\mathcal {A}$
. Let
$R_n$
be the first time this process repeats its first n symbols of output. It is well known that
$({1}/{n})\log R_n$
converges almost surely to the entropy of the process. Refined properties of
$R_n$
(large deviations, multifractality, etc) are encoded in the return-time
$L^q$
-spectrum defined as
provided the limit exists. We consider the case where
$(X_k)_{k\geq 0}$
is distributed according to the equilibrium state of a potential with summable variation, and we prove that
where
$P((1-q)\varphi )$
is the topological pressure of
$(1-q)\varphi $
, the supremum is taken over all shift-invariant measures, and
$q_\varphi ^*$
is the unique solution of
$P((1-q)\varphi ) =\sup _\eta \int \varphi \,d\eta $
. Unexpectedly, this spectrum does not coincide with the
$L^q$
-spectrum of
$\mu _\varphi $
, which is
$P((1-q)\varphi )$
, and it does not coincide with the waiting-time
$L^q$
-spectrum in general. In fact, the return-time
$L^q$
-spectrum coincides with the waiting-time
$L^q$
-spectrum if and only if the equilibrium state of
$\varphi $
is the measure of maximal entropy. As a by-product, we also improve the large deviation asymptotics of
$({1}/{n})\log R_n$
.
In Section~\ref{continuity} we proved that the discounted value is continuous in the parameters of the game, see Theorem~\ref{theorem7}.
One weakness of this result is that it does not bound the Lipschitz constant of the value function $(\lambda,q,r) \mapsto v_\lambda(s;q,r)$.
In this chapter, we will strengthen Theorem~\ref{theorem7}, and, using the concept of $B$-graphs, develop a bound on the Lipschitz constant of the value function.
Our technique will allow us to study the continuityof the limit $\lim_{\lambda \to 0} v_\lambda(s;q,r)$ as a function of $q$ and $r$.
Asymptotics deviation probabilities of the sum
$S_n=X_1+\dots+X_n$
of independent and identically distributed real-valued random variables have been extensively investigated, in particular when
$X_1$
is not exponentially integrable. For instance, Nagaev (1969a, 1969b) formulated exact asymptotics results for
$\mathbb{P}(S_n>x_n)$
with
$x_n\to \infty$
when
$X_1$
has a semiexponential distribution. In the same setting, Brosset et al. (2020) derived deviation results at logarithmic scale with shorter proofs relying on classical tools of large-deviation theory and making the rate function at the transition explicit. In this paper we exhibit the same asymptotic behavior for triangular arrays of semiexponentially distributed random variables.
Let
$\mathbf{X}$
be a
$p\times n$
random matrix whose entries are independent and identically distributed real random variables with zero mean and unit variance. We study the limiting behaviors of the 2-normal condition number k(p,n) of
$\mathbf{X}$
in terms of large deviations for large n, with p being fixed or
$p=p(n)\rightarrow\infty$
with
$p(n)=o(n)$
. We propose two main ingredients: (i) to relate the large-deviation probabilities of k(p,n) to those involving n independent and identically distributed random variables, which enables us to consider a quite general distribution of the entries (namely the sub-Gaussian distribution), and (ii) to control, for standard normal entries, the upper tail of k(p,n) using the upper tails of ratios of two independent
$\chi^2$
random variables, which enables us to establish an application in statistical inference.
The logistic birth and death process is perhaps the simplest stochastic population model that has both density-dependent reproduction and a phase transition, and a lot can be learned about the process by studying its extinction time,
$\tau_n$
, as a function of system size n. A number of existing results describe the scaling of
$\tau_n$
as
$n\to\infty$
for various choices of reproductive rate
$r_n$
and initial population
$X_n(0)$
as a function of n. We collect and complete this picture, obtaining a complete classification of all sequences
$(r_n)$
and
$(X_n(0))$
for which there exist rescaling parameters
$(s_n)$
and
$(t_n)$
such that
$(\tau_n-t_n)/s_n$
converges in distribution as
$n\to\infty$
, and identifying the limits in each case.