We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When restricted to alternating links, both Heegaard Floer and Khovanov homology concentrate along a single diagonal $\delta$-grading. This leads to the broader class of thin links that one would like to characterize without reference to the invariant in question. We provide a relative version of thinness for tangles and use this to characterize thinness via tangle decompositions along Conway spheres. These results bear a strong resemblance to the L-space gluing theorem for three-manifolds with torus boundary. Our results are based on certain immersed curve invariants for Conway tangles, namely the Heegaard Floer invariant $\operatorname {HFT}$ and the Khovanov invariant $\widetilde {\operatorname {Kh}}$ that were developed by the authors in previous works.
A spectral sequence is established whose $E_{2}$ page is Bar-Natan's variant of Khovanov homology and which abuts to a deformation of instanton homology for knots and links. This spectral sequence arises as a specialization of a spectral sequence whose $E_{2}$ page is a characteristic-2 version of $F_{5}$ homology in Khovanov's classification.
In the integral Khovanov homology of links, the presence of odd torsion is rare. Homologically thin links, that is, links whose Khovanov homology is supported on two adjacent diagonals, are known to contain only
$\mathbb {Z}_2$
torsion. In this paper, we prove a local version of this result. If the Khovanov homology of a link is supported on two adjacent diagonals over a range of homological gradings and the Khovanov homology satisfies some other mild restrictions, then the Khovanov homology of that link has only
$\mathbb {Z}_2$
torsion over that range of homological gradings. These conditions are then shown to be met by an infinite family of three-braids, strictly containing all three-strand torus links, thus giving a partial answer to Sazdanović and Przytycki’s conjecture that three-braids have only
$\mathbb {Z}_2$
torsion in Khovanov homology. We use these computations and our main theorem to obtain the integral Khovanov homology for all links in this family.
The Jones polynomial is a famous link invariant that can be defined diagrammatically via a skein relation. Khovanov homology is a richer link invariant that categorifies the Jones polynomial. Using spectral sequences, we obtain a skein-type relation satisfied by the Khovanov homology. Thanks to this relation, we are able to generalize the Khovanov homology in order to obtain a categorification of the θ-invariant, which is itself a generalization of the Jones polynomial.
We define a limiting
${\mathfrak {sl}_N}$
Khovanov–Rozansky homology for semi-infinite positive multicolored braids. For a large class of such braids, we show that this limiting homology categorifies a highest-weight projector in the tensor product of fundamental representations determined by the coloring of the braid. This effectively completes the extension of Cautis’ similar result for infinite twist braids, begun in our earlier papers with Islambouli and Abel. We also present several similar results for other families of semi-infinite and bi-infinite multicolored braids.
We define a homology theory of virtual links built out of the direct sum of the standard Khovanov complex with itself, motivating the name doubled Khovanov homology. We demonstrate that it can be used to show that some virtual links are non-classical, and that it yields a condition on a virtual knot being the connect sum of two unknots. Further, we show that doubled Khovanov homology possesses a perturbation analogous to that defined by Lee in the classical case, and we define a doubled Rasmussen invariant. This invariant is used to obtain various cobordism obstructions; in particular, it is an obstruction to sliceness. Finally, we show that the doubled Rasmussen invariant contains the odd writhe of a virtual knot and use this to show that knots with non-zero odd writhe are not slice.
We study in detail two row Springer fibres of even orthogonal type from an algebraic as well as a topological point of view. We show that the irreducible components and their pairwise intersections are iterated ${{\mathbb{P}}^{1}}$-bundles. Using results of Kumar and Procesi we compute the cohomology ring with its action of the Weyl group. The main tool is a type $\text{D}$ diagram calculus labelling the irreducible components in a convenient way that relates to a diagrammatical algebra describing the category of perverse sheaves on isotropic Grassmannians based on work of Braden. The diagram calculus generalizes Khovanov's arc algebra to the type $\text{D}$ setting and should be seen as setting the framework for generalizing well-known connections of these algebras in type $\text{A}$ to other types.
Anstee, Przytycki, and Rolfsen introduced the idea of rotants, pairs of links related by a generalised form of link mutation. We exhibit infinitely many pairs of rotants that can be distinguished by Khovanov homology, but not by the Jones polynomial.
Khovanov homology, an invariant of links in ${ \mathbb{R} }^{3} $, is a graded homology theory that categorifies the Jones polynomial in the sense that the graded Euler characteristic of the homology is the Jones polynomial. Asaeda et al. [‘Categorification of the Kauffman bracket skein module of $I$-bundles over surfaces’, Algebr. Geom. Topol.4 (2004), 1177–1210] generalised this construction by defining a double graded homology theory that categorifies the Kauffman bracket skein module of links in $I$-bundles over surfaces, except for the surface $ \mathbb{R} {\mathrm{P} }^{2} $, where the construction fails due to strange behaviour of links when projected to the nonorientable surface $ \mathbb{R} {\mathrm{P} }^{2} $. This paper categorifies the missing case of the twisted $I$-bundle over $ \mathbb{R} {\mathrm{P} }^{2} $, $ \mathbb{R} {\mathrm{P} }^{2} \widetilde {\times } I\approx \mathbb{R} {\mathrm{P} }^{3} \setminus \{ \ast \} $, by redefining the differential in the Khovanov chain complex in a suitable manner.
For a fixed parabolic subalgebra 𝔭 of we prove that the centre of the principal block 𝒪0𝔭 of the parabolic category 𝒪 is naturally isomorphic to the cohomology ring H*(ℬ𝔭) of the corresponding Springer fibre. We give a diagrammatic description of 𝒪0𝔭 for maximal parabolic 𝔭 and give an explicit isomorphism to Braden’s description of the category PervB(G(k,n)) of Schubert-constructible perverse sheaves on Grassmannians. As a consequence Khovanov’s algebra ℋn is realised as the endomorphism ring of some object from PervB(G(n,n)) which corresponds under localisation and the Riemann–Hilbert correspondence to a full projective–injective module in the corresponding category 𝒪0𝔭. From there one can deduce that Khovanov’s tangle invariants are obtained from the more general functorial invariants in [C. Stroppel, Categorification of the Temperley Lieb category, tangles, and cobordisms via projective functors, Duke Math. J. 126(3) (2005), 547–596] by restriction.
We define a family of formal Khovanov brackets of a colored link depending on two parameters. The isomorphism classes of these brackets are invariants of framed colored links. The Bar-Natan functors applied to these brackets produce Khovanov and Lee homology theories categorifying the colored Jones polynomial. Further, we study conditions under which framed colored link cobordisms induce chain transformations between our formal brackets. We conjecture that for special choice of parameters, Khovanov and Lee homology theories of colored links are functorial (up to sign). Finally, we extend the Rasmussen invariant to links and give examples where this invariant is a stronger obstruction to sliceness than the multivariable Levine–Tristram signature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.