We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We state a conjecture that relates the derived category of smooth representations of a $p$-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of ${\rm GL}_n$ by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and of Emerton and Helm.
Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$, $\mathrm {Sp}(2n)$, and $\mathrm {O}(2n)$.
Let $G$ be a split connected reductive group over a finite field of characteristic $p > 2$ such that $G_\text {der}$ is absolutely almost simple. We give a geometric construction of perverse $\mathbb {F}_p$-sheaves on the Iwahori affine flag variety of $G$ which are central with respect to the convolution product. We deduce an explicit formula for an isomorphism from the spherical mod $p$ Hecke algebra to the center of the Iwahori mod $p$ Hecke algebra. We also give a formula for the central integral Bernstein elements in the Iwahori mod $p$ Hecke algebra. To accomplish these goals we construct a nearby cycles functor for perverse $\mathbb {F}_p$-sheaves and we use Frobenius splitting techniques to prove some properties of this functor. We also prove that certain equal characteristic analogues of local models of Shimura varieties are strongly $F$-regular, and hence they are $F$-rational and have pseudo-rational singularities.
We show that the mod p cohomology of a simple Shimura variety treated in Harris-Taylor’s book vanishes outside a certain nontrivial range after localizing at any non-Eisenstein ideal of the Hecke algebra. In cases of low dimensions, we show the vanishing outside the middle degree under a mild additional assumption.
We formulate a $q$-Schur algebra associated with an arbitrary $W$-invariant finite set $X_{\text{f}}$ of integral weights for a complex simple Lie algebra with Weyl group $W$. We establish a $q$-Schur duality between the $q$-Schur algebra and Hecke algebra associated with $W$. We then realize geometrically the $q$-Schur algebra and duality and construct a canonical basis for the $q$-Schur algebra with positivity. With suitable choices of $X_{\text{f}}$ in classical types, we recover the $q$-Schur algebras in the literature. Our $q$-Schur algebras are closely related to the category ${\mathcal{O}}$, where the type $G_{2}$ is studied in detail.
In this paper we establish Springer correspondence for the symmetric pair $(\text{SL}(N),\text{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaf construction. As an application of our results we see that the cohomology of Hessenberg varieties can be expressed in terms of irreducible representations of Hecke algebras of symmetric groups at $q=-1$. Conversely, we see that the irreducible representations of Hecke algebras of symmetric groups at $q=-1$ arise in geometry.
This paper deals with the geometric local theta correspondence at the Iwahori level for dual reductive pairs of type II over a non-Archimedean field $F$ of characteristic $p\neq 2$ in the framework of the geometric Langlands program. First we construct and study the geometric version of the invariants of the Weil representation of the Iwahori-Hecke algebras. In the particular case of $(\mathbf{GL}_{1},\mathbf{GL}_{m})$ we give a complete geometric description of the corresponding category. The second part of the paper deals with geometric local Langlands functoriality at the Iwahori level in a general setting. Given two reductive connected groups $G$ and $H$ over $F$, and a morphism ${\check{G}}\times \text{SL}_{2}\rightarrow \check{H}$ of Langlands dual groups, we construct a bimodule over the affine extended Hecke algebras of $H$ and $G$ that should realize the geometric local Arthur–Langlands functoriality at the Iwahori level. Then, we propose a conjecture describing the geometric local theta correspondence at the Iwahori level constructed in the first part in terms of this bimodule, and we prove our conjecture for pairs $(\mathbf{GL}_{1},\mathbf{GL}_{m})$.
In this paper, we study the structure of the local components of the (shallow, i.e. without $U_{p}$) Hecke algebras acting on the space of modular forms modulo $p$ of level $1$, and relate them to pseudo-deformation rings. In many cases, we prove that those local components are regular complete local algebras of dimension $2$, generalizing a recent result of Nicolas and Serre for the case $p=2$.
Let F be an algebraically closed field, G be a finite group and H be a subgroup of G. We answer several questions about the centralizer algebra FGH. Among these, we provide examples to show that
• the centre Z(FGH) can be larger than the F-algebra generated by Z(FG) and Z(FH),
•FGH can have primitive central idempotents that are not of the form ef, where e and f are primitive central idempotents of FG and FH respectively,
• it is not always true that the simple FGH-modules are the same as the non-zero FGH-modules HomFH(S, T ↓ H), where S and T are simple FH and FG-modules, respectively.
Let Δ be an affine building of type and let 𝔸 be its fundamental apartment. We consider the set 𝕌0 of vertices of type 0 of 𝔸 and prove that the Hecke algebra of all W0-invariant difference operators with constant coefficients acting on 𝕌0 has three generators. This property leads us to define three Laplace operators on vertices of type 0 of Δ. We prove that there exists a joint eigenspace of these operators having dimension greater than ∣W0 ∣. This implies that there exist joint eigenfunctions of the Laplacians that cannot be expressed, via the Poisson transform, in terms of a finitely additive measure on the maximal boundary Ω of Δ.
Suppose that G is a connected reductive group over a p-adic field F, that K is a hyperspecial maximal compact subgroup of G(F), and that V is an irreducible representation of K over the algebraic closure of the residue field of F. We establish an analogue of the Satake isomorphism for the Hecke algebra of compactly supported,K-biequivariant functions f:G(F)→End V. These Hecke algebras were first considered by Barthel and Livné for GL 2. They play a role in the recent mod p andp-adic Langlands correspondences for GL 2 (ℚp) , in generalisations of Serre’s conjecture on the modularity of mod p Galois representations, and in the classification of irreducible mod p representations of unramified p-adic reductive groups.
Let H be the generic Iwahori–Hecke algebra associated with a finite Coxeter group W. Recently, we have shown that H admits a natural cellular basis in the sense of Graham and Lehrer, provided that W is a Weyl group and all parameters of H are equal. The construction involves some data arising from the Kazhdan–Lusztig basis {Cw} of H and Lusztig's asymptotic ring J}. We attempt to study J and its representation theory from a new point of view. We show that J can be obtained in an entirely different fashion from the generic representations of H, without any reference to {Cw}. We then extend the construction of the cellular basis to the case where W is not crystallographic. Furthermore, if H is a multi-parameter algebra, we see that there always exists at least one cellular structure on H. Finally, the new construction of J may be extended to Hecke algebras associated with complex reflection groups.
Let ρ be a two-dimensional modulo p representation of the absolute Galois group of a totally real number field. Under the assumptions that ρ has a large image and admits a low-weight crystalline modular deformation we show that any low-weight crystalline deformation of ρ unramified outside a finite set of primes will be modular. We follow the approach of Wiles as generalized by Fujiwara. The main new ingredient is an Ihara-type lemma for the local component at ρ of the middle degree cohomology of a Hilbert modular variety. As an application we relate the algebraic p-part of the value at one of the adjoint L-function associated with a Hilbert modular newform to the cardinality of the corresponding Selmer group.
This paper is devoted to the proof of two results. The first was conjectured in 1994 by the author. It concerns the identity, under certain assumptions, of the universal deformation ring of $p$-nearly ordinary Galois representations and a local component of the universal nearly ordinary Hecke algebra in the sense of Hida. The other, which relies on the first, concerns the modularity of certain abelian surfaces. More precisely, one can associate to certain irreducible abelian surfaces defined over the rationals overconvergent $p$-adic cusp eigenforms. The question of whether these forms are classical is not studied in this paper.
The purpose of this article is to determine the representation type for all of the Hecke algebras of classical type. To do this, we combine methods from our previous work, which is used to obtain information on their Gabriel quivers, and recent advances in the theory of finite-dimensional algebras. The principal computation is for Hecke algebras of type B with two parameters. Then, we show that the representation type of Hecke algebras is governed by their Poincaré polynomials.
We study the relationship between the cohomology of $q$-Schur algebras and Hecke algebras in type $A$. A key tool, which has independent interest, involves a specific Hecke algebra resolution, introduced in a special case by Deodhar. This resolution is somewhat akin to the Koszul resolution for Lie algebra cohomology, in that it has an explicit description yet applies for all modules. An application of the properties of this resolution establishes a ‘quantum Weyl reciprocity’ connecting, in a range of degrees, the cohomology of the $q$-Schur algebra with that of the Hecke algebra. This work also provides, independently of the resolution, cohomological inequalities which apply in all degrees and which sometimes can be related to Kazhdan–Lusztig polynomials. Finally, we extend to cohomology a decomposition number method of Erdmann, and illustrate its usefulness in computations. This method enables us to exhibit some properties of symmetric group cohomology which, if true, would imply the $SL_n$-version of Lusztig's characteristic $p$ character conjecture.
The goal of this paper is to carry out some explicit calculations of the actions of Hecke operators on spaces of algebraic modular forms on certain simple groups. In order to do this, we give the coset decomposition for the supports of these operators. We present the results of our calculations along with interpretations concerning the lifting of forms. The data we have obtained is of interest both from the point of view of number theory and of representation theory. For example, our data, together with a conjecture of Gross, predicts the existence of a Galois extension of Q with Galois group G2(F5) which is ramified only at the prime 5. We also provide evidence of the existence of the symmetric cube lifting from PGL2 to PGSp4.
In the previous part of this paper, we constructed a large family of Hecke algebras on some classical groups G defined over p-adic fields in order to understand their admissible representations. Each Hecke algebra is associated to a pair (JΣ, ρΣ) of an open compact subgroup JΣ and its irreducible representation ρΣ which is constructed from given data Σ = (Γ, P′0, ϱ). Here, Γ is a semisimple element in the Lie algebra of G, P′0 is a parahoric subgroup in the centralizer of Γ in G, and ϱ is a cuspidal representation on the finite reductive quotient of P′0. In this paper, we explicitly describe those Hecke algebras when P′0 is a minimal parahoric subgroup, ϱ is trivial and ρΣ is a character.
In this paper we use the Hecke algebra of type $\bf B$ to define a new algebra $\mathcal S$
which is an analogue of the $q$-Schur algebra. We show that $\mathcal S$ has ‘generic’ basis which is
independent of the choice of ring and the parameters $q$ and $Q$. We then construct Weyl modules for $\mathcal
S$ and obtain, as factor modules, a family of irreducible $\mathcal S$-modules defined over any field.