We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give sufficient conditions for the essential spectrum of the Hermitian square of a class of Hankel operators on the Bergman space of the polydisc to contain intervals. We also compute the spectrum in case the symbol is a monomial.
In this chapter, we consider the central issue of minimality of the state-space system representation, as well as equivalences of representations. The question introduces important new basic operators and spaces related to the state-space description. In our time-variant context, what we call the Hankel operator plays the central role, via a minimal composition (i.e., product), of a reachability operator and an observability operator. Corresponding results for LTI systems (a special case) follow readily from the LTV case. In a later starred section and for deeper insights, the theory is extended to infinitely indexed systems, but this entails some extra complications, which are not essential for the main, finite-dimensional treatment offered, and can be skipped by students only interested in finite-dimensional cases.
This note characterizes, in terms of interpolating Blaschke products, the symbols of Hankel operators essentially commuting with all quasicontinuous Toeplitz operators on the Hardy space of the unit circle. It also shows that such symbols do not contain the complex conjugate of any nonconstant singular inner function.
We consider the problem of determining for which square integrable functions $f$ and $g$ on the polydisk the densely defined Hankel product ${{H}_{f}}\,H_{g}^{*}$ is bounded on the Bergman space of the polydisk. Furthermore, we obtain similar results for the mixed Haplitz products ${{H}_{g}}\,{{T}_{{\bar{f}}}}$ and ${{T}_{f}}\,H_{g}^{*}$, where $f$ and $g$ are square integrable on the polydisk and $f$ is analytic.
In this note we show that two conjectures of George Weiss on admissible and weakly admissible observation operators fail to hold in general for the right shift semigroup in the case that the output space is infinite dimensional.