We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Dawn orbiter mission has revealed the mineralogical and chemical composition of Vesta’s surface materials and constraints on its interior structure. The surface is composed of breccias of basalt and ultramafic rocks, contaminated by exogenic carbonaceous chondrite.At the center of the asteroid is a metallic core about half the diameter of the body, and gravity data provide information on the thicknesses and densities of the mantle and crust.Huge, overlapping impact basins expose rocks of the lower crust and mantle. Howardite–eucrite–diogenite (HED) meteorites are samples of Vesta, mostly excavated by the giant impacts and delivered to Earth via an orbital resonance with Jupiter.Petrologic and geochemical studies of HEDs constrain interpretations of Dawn’s spectral and geochemical data, and offer otherwise unobtainable insights into the asteroid’s origin, bulk composition, global differentiation, impact history, and geochronology.Major unresolved questions include whether Vesta had an early magma ocean, as well as the source of “missing” olivine in mantle rocks, and a possible role for fluids. As the sole surviving rocky protoplanet, Vesta provides a unique perspective on the nebular raw materials that accreted to form the terrestrial planets.
Within the general framework of differentiation in the early solar system, the asteroid Vesta is a particularly interesting case study. First, its size is well constrained, simplifying modeling efforts that can concentrate on bodies of relevant size. Second, the rich diversity of HED meteorites provides constraints on bulk composition and a unique opportunity to confront predictions of numerical models with petrologic reality. Finally, the Dawn mission, in addition to confirming the link between Vesta and the HED’s, also provides critical constraints on the internal density structure and composition of the asteroid. In this chapter we begin by considering petrologic and geochemical constraints on the bulk composition and differentiation time-scales of Vesta, before presenting modeling efforts to understand its chemical and physical evolution. The modeling indicates accretion within the first million years of solar system history and complex thermal and chemical retroactions linked to the redistribution of 26Al during transport of melt toward the surface. Formation of a shallow magma ocean is predicted, leading to a vertically stratified mineralogical structure with olivine sequestered at depth and protracted cooling at depth. These features are consistent with the essential features of HED petrology and chronology and observations of the Dawn mission.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.