We prove a result on equilibrium measures for potentials with summable variation on arbitrary subshifts over a countable amenable group. For finite configurations v and w, if v is always replaceable by w, we obtain a bound on the measure of v depending on the measure of w and a cocycle induced by the potential. We then use this result to show that under this replaceability condition, we can obtain bounds on the Lebesgue–Radon–Nikodym derivative $d (\mu _\phi \circ \xi ) / d\mu _\phi $ for certain holonomies $\xi $ that generate the homoclinic (Gibbs) relation. As corollaries, we obtain extensions of results by Meyerovitch [Gibbs and equilibrium measures for some families of subshifts. Ergod. Th. & Dynam. Sys. 33(3) (2013), 934–953], and García-Ramos and Pavlov [Extender sets and measures of maximal entropy for subshifts. J. Lond. Math. Soc. (2) 100(3) (2019), 1013–1033] to the countable amenable group subshift setting. Our methods rely on the exact tiling result for countable amenable groups by Downarowicz, Huczek, and Zhang [Tilings of amenable groups. J. Reine Angew. Math. 2019(747) (2019), 277–298] and an adapted proof technique from García-Ramos and Pavlov.