To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on RR Lyrae with accurate proper motions and classification in Gaia DR3, we determine the Milky Way mass distribution from fitting dynamical models to the gravitational force field and the Galactic rotation curve. Applying Gaussian Mixture Model to the intrinsic velocity distribution, we present the result of a multi-component kinematic model of RR Lyrae in the inner regions 5 ≲ r ≲ 20 kpc. Considering the early accretion history of the MW and thus the stellar halo may not be in equilibrium, we separate the halo population into an isotropic stellar halo and the radially-anisotropic population relevant to a merge event. With a Bayesian approach, we fit the potential model parameters, including the density flattening of the dark matter (DM) halo. Our best-fitting dynamical model suggests a nearly spherical spheroid shape of , a DM halo mass of , total MW mass of .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.