Hostname: page-component-7dd5485656-s6l46 Total loading time: 0 Render date: 2025-10-31T14:05:31.306Z Has data issue: false hasContentIssue false

The study of the Galactic mass distribution from Gaia DR3 RR Lyrae

Published online by Cambridge University Press:  30 October 2025

Cuihua Du*
Affiliation:
College of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
Duo Li
Affiliation:
College of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China

Abstract

Based on RR Lyrae with accurate proper motions and classification in Gaia DR3, we determine the Milky Way mass distribution from fitting dynamical models to the gravitational force field and the Galactic rotation curve. Applying Gaussian Mixture Model to the intrinsic velocity distribution, we present the result of a multi-component kinematic model of RR Lyrae in the inner regions 5 ≲ r ≲ 20 kpc. Considering the early accretion history of the MW and thus the stellar halo may not be in equilibrium, we separate the halo population into an isotropic stellar halo and the radially-anisotropic population relevant to a merge event. With a Bayesian approach, we fit the potential model parameters, including the density flattening of the dark matter (DM) halo. Our best-fitting dynamical model suggests a nearly spherical spheroid shape of , a DM halo mass of , total MW mass of .

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bird, S. A., Xue, X.-X., Liu, C., et al., 2022, MNRAS, 516, 713 CrossRefGoogle Scholar
Belokurov, V., Erkal, D., Evans, N.W., Koposov, S. E., Deason, A. J., 2018, MNRAS, 478, 611 CrossRefGoogle Scholar
Boyan-Kolchin, M., Bullock, J. S., Kaplinghat, M., 2011, MNRAS, 415L, 40 CrossRefGoogle Scholar
Bovy, J. & Rix, H.-W. 2013, ApJ, 779, 115 CrossRefGoogle Scholar
Bovy, J., Bahmanyar, A., Fritz, T. K., Kallivayalil, N., 2016, ApJ, 833, 31 CrossRefGoogle Scholar
Bullock, J. S., Boyan-Kolchin, M., ARA&A, 2017, 55, 343 Google Scholar
Callingham, T. M., Cautun, M., Deason, A. J., et al., 2019, MNRAS, 484, 5453 CrossRefGoogle Scholar
Clementini, G., Ripepi, V., Molinaro, R., et al., 2019, A&A, 622, 60 Google Scholar
Clementini, G., Ripepi, V., Garofalo, A., et al., 2022, arXiv e-prints, arXiv:2206.06278 Google Scholar
Drake, A. J., Djorgovski, S. G., Catelan, M., et al., 2017, MNRAS, 469, 3688 CrossRefGoogle Scholar
Deason, A. J., Erkal, D., Belokurov, V., et al., 2021, MNRAS, 501, 5964 CrossRefGoogle Scholar
Eilers, A.C., Hogg, D.W., Rix, H.W., Ness, M. K., 2019, ApJ, 871, 120 CrossRefGoogle Scholar
Foreman-Mackey, D., Hogg, D.W., Lang, D. and Goodman, J., 2013, PASP, 125, 306 CrossRefGoogle Scholar
Helmi, A., Babusiaux, C., Koppelman, H. H., et al., 2018, Nature, 563, 85 CrossRefGoogle Scholar
Iorio, G., Belokurov, V., 2021, MNRAS, 502, 5686 CrossRefGoogle Scholar
Koposov, S. E., Rix, H., Hogg, D.W., 2010, ApJ, 712, 260.CrossRefGoogle Scholar
Lovell, M. R., Pillepich, A., Genel, S., et al., 2018, MNRAS, 481, 1950 CrossRefGoogle Scholar
Li, H., Hammer, F., Babusiaux, C., Pawlowski, M. S., et al., 2021, ApJ, 916, 8 CrossRefGoogle Scholar
Malhan, K., Ibata, R. A., 2019, MNRAS, 486, 2995 CrossRefGoogle Scholar
McMillan, P. J., 2017, MNRAS, 465, 76 CrossRefGoogle Scholar
Muraveva, T., Delgado, H.E., Clementini, G., 2018, MNRAS, 481, 1195 CrossRefGoogle Scholar
Naidu, R. P., Conroy, C., Bonaca, A., et al., 2021, ApJ, 923, 92 CrossRefGoogle Scholar
Nitschai, M.S., Eiler, A.C., Neumayer, N., et al., 2021, ApJ, 916, 112 CrossRefGoogle Scholar
Prudil, Z., Koch-Hansen, A.J., Lemasle, B., et al., 2022, A&A, 664A, 148 Google Scholar
Sesar, B., Fouesneau, M., Price-Whelan, A. M., et al., 2017, ApJ, 838, 107 CrossRefGoogle Scholar
Vasiliev, E., Belokurov, V., Erkal, D., 2021, MNRAS, 501, 2279 CrossRefGoogle Scholar
Wang, W.T., Han, J.X., Cantun, M., et al., 2020, SCPMA, 6309801Google Scholar
Wang, J., Hammer, F., Yang, Y., 2022, MNRAS, 510, 2242 CrossRefGoogle Scholar
Wegg, C., Gerhard, O., Bieth, M., 2019, MNRAS, 485, 3296 CrossRefGoogle Scholar