This review summarizes evidence from cohort and intervention studies on the relationships between nutrition in early life, epigenetics, and lifelong health. Established links include maternal diet quality with conception rates, micronutrient sufficiency before and during pregnancy with preterm birth prevention, gestational vitamin D intake with offspring bone health, preconception iodine status with child IQ, adiposity with offspring obesity, and maternal stress with childhood atopic eczema. Animal studies demonstrate that early-life environmental exposures induce lasting phenotypic changes via epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, with DNA methylation of non-imprinted genes most extensively studied. Human data show that nutrition during pregnancy induces epigenetic changes associated with childhood obesity risk, such as Antisense long Non-coding RNA in the INK4 Locus (ANRIL, a long non-coding RNA) methylation variations linked to obesity and replicated across multiple populations. Emerging insights reveal that paternal nutrition and lifestyle also modify sperm epigenomics and influence offspring development. Although nutritional randomised trials in pregnancy remain limited, findings from the NiPPeR trial showed widespread preconception micronutrient deficiencies and indicated that maternal preconception and pregnancy nutritional supplementation can reduce preterm birth and early childhood obesity. The randomised trials UPBEAT and MAVIDOS have shown that nutritional intervention can impact offspring epigenetics. Postnatal nutritional exposures further influence offspring epigenetic profiles, exemplified by ALSPAC cohort findings linking rapid infant weight gain to later methylation changes and increased obesity risk. Together, these studies support a persistent impact of maternal and early-life nutrition on child health and development, underpinned by modifiable epigenetic processes.