We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the classical limit of a family of irreducible representations of the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$. After a suitable twist, the limit is a module for $\mathfrak{sl}_{n+1}[t]$, i.e., for the maximal standard parabolic subalgebra of the affine Lie algebra. Our first result is about the family of prime representations introduced in Hernandez and Leclerc (Duke Math. J.154 (2010), 265–341; Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statitics, Volume 40, pp. 175–193 (2013)), in the context of a monoidal categorification of cluster algebras. We show that these representations specialize (after twisting) to $\mathfrak{sl}_{n+1}[t]$-stable prime Demazure modules in level-two integrable highest-weight representations of the classical affine Lie algebra. It was proved in Chari et al. (arXiv:1408.4090) that a stable Demazure module is isomorphic to the fusion product of stable prime Demazure modules. Our next result proves that such a fusion product is the limit of the tensor product of the corresponding irreducible prime representations of quantum affine $\mathfrak{sl}_{n+1}$.
The support varieties for the induced modules or Weyl modules for a reductive algebraic group G were computed over the first Frobenius kernel G1 by Nakano, Parshall and Vella. A natural generalization of this computation is the calculation of the support varieties of Demazure modules over the first Frobenius kernel, B1, of the Borel subgroup B. In this paper we initiate the study of such computations. We complete the entire picture for reductive groups with underlying root systems A1 and A2. Moreover, we give complete answers for Demazure modules corresponding to a particular (standard) element in the Weyl group, and provide results relating support varieties between different Demazure modules which depend on the Bruhat order.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.