Let   $x\,=\,\left( {{x}_{1}},\,.\,.\,.\,,\,{{x}_{n}} \right)\,\in \,{{\mathbb{R}}^{n}}$  and
 $x\,=\,\left( {{x}_{1}},\,.\,.\,.\,,\,{{x}_{n}} \right)\,\in \,{{\mathbb{R}}^{n}}$  and   ${{\delta }_{\text{ }\!\!\lambda\!\!\text{ }}}x\,=\,\left( {{\text{ }\!\!\lambda\!\!\text{ }}^{{{\alpha }_{1}}}}{{x}_{1}},\,.\,.\,.\,,\,{{\text{ }\!\!\lambda\!\!\text{ }}^{{{\alpha }_{n}}}}{{x}_{n}} \right)$ , where
 ${{\delta }_{\text{ }\!\!\lambda\!\!\text{ }}}x\,=\,\left( {{\text{ }\!\!\lambda\!\!\text{ }}^{{{\alpha }_{1}}}}{{x}_{1}},\,.\,.\,.\,,\,{{\text{ }\!\!\lambda\!\!\text{ }}^{{{\alpha }_{n}}}}{{x}_{n}} \right)$ , where   $\text{ }\lambda \,>\text{0}$  and
 $\text{ }\lambda \,>\text{0}$  and   $1\,\le \,{{\alpha }_{1}}\,\le \,\cdot \,\cdot \,\cdot \,\le \,{{\alpha }_{n}}$ . Denote
 $1\,\le \,{{\alpha }_{1}}\,\le \,\cdot \,\cdot \,\cdot \,\le \,{{\alpha }_{n}}$ . Denote   $\left| \alpha\right|\,=\,{{\alpha }_{1}}+\,\cdot \,\cdot \,\cdot \,+{{\alpha }_{n}}$ . We characterize those functions
 $\left| \alpha\right|\,=\,{{\alpha }_{1}}+\,\cdot \,\cdot \,\cdot \,+{{\alpha }_{n}}$ . We characterize those functions   $A\left( x \right)$  for which the parabolic Calderón commutator
 $A\left( x \right)$  for which the parabolic Calderón commutator
 1  $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{T}_{A}}f\left( x \right)\equiv \text{p}\text{.v}\text{.}\int_{{{\mathbb{R}}^{n}}}{K\left( x-y \right)\left[ A\left( x \right)-A\left( y \right) \right]}f\left( y \right)dy$$
 $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{{T}_{A}}f\left( x \right)\equiv \text{p}\text{.v}\text{.}\int_{{{\mathbb{R}}^{n}}}{K\left( x-y \right)\left[ A\left( x \right)-A\left( y \right) \right]}f\left( y \right)dy$$  
is bounded on   ${{L}^{2}}\left( {{\mathbb{R}}^{n}} \right)$ , where
 ${{L}^{2}}\left( {{\mathbb{R}}^{n}} \right)$ , where   $K\left( {{\delta }_{\text{ }\!\!\lambda\!\!\text{ }}}x \right)\,=\,{{\text{ }\!\!\lambda\!\!\text{ }}^{-\,\left| \alpha\right|\,-\,1}}K\left( x \right)$ ,
 $K\left( {{\delta }_{\text{ }\!\!\lambda\!\!\text{ }}}x \right)\,=\,{{\text{ }\!\!\lambda\!\!\text{ }}^{-\,\left| \alpha\right|\,-\,1}}K\left( x \right)$ ,   $K$  is smooth away fromthe origin and satisfies a certain cancellation property.
 $K$  is smooth away fromthe origin and satisfies a certain cancellation property.