We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders.
Methods:
Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ (N = 301) or BD (N = 211) and a healthy control group (HC, N = 378). TL was analysed with linear regressions for associations with levels of 12 immune markers linked to SCZ or BD. Adjustments were made for a broad range of potential confounding variables. TL was measured by quantitative polymerase chain reaction (qPCR) and the immune markers were measured by enzyme immunoassays.
Results:
A positive association between levels of soluble tumour necrosis factor receptor 1A (sTNF-R1) and TL in SCZ (β = 0.191, p = 0.012) was observed. Plasma levels of the other immune markers were not significantly associated with TL in the BD, SCZ or HC groups.
Conclusion:
There was limited evidence of association between immune markers and TL in SCZ and BD. The results provide little support for involvement of immune dysregulation, as reflected by current systemic markers, in telomere attrition-related accelerated ageing in severe mental disorders.
Visceral leishmaniasis (VL) is a severe infectious disease caused by protozoan parasites of the Leishmania donovani complex. Blood cytokine concentrations in VL patients can inform us about underlying immunopathogenesis and may serve as a biomarker for treatment effectiveness. However, cytokine levels have not yet been studied in VL patients from Kenya, where case load is high. This study measured the serum cytokine profile, blood parasite load and clinical and haematological features of VL patients from West Pokot County, Kenya, over the course of treatment with sodium stibogluconate and paromomycin (SSG-PM). VL patients recruited at the hospital presented with splenomegaly and weight loss, and frequently had pancytopenia and anaemia. Median Leishmania parasite load in blood, determined with real-time polymerase chain reaction, was 2.6 × 104 parasite equivalents mL−1. Compared to endemic healthy controls, serum interferon gamma (IFN-γ), interleukin 5 (IL-5), IL-6, IL-10, IL-12p70, IL-17A and IL-27 were significantly elevated in untreated VL patients. Severe VL was associated with higher IL-10 and lower IFN-γ levels. After 17 daily injections with SSG-PM, disease symptoms disappeared, leukocyte and thrombocyte counts significantly increased, and blood parasite load decreased to undetectable levels in all VL patients. There was a significant decrease in IL-10 and IL-6, whereas IL-17A levels increased; the remaining cytokines showed no significant concentration change during treatment. In conclusion, the results suggest that SSG-PM treatment of VL patients from West Pokot was effective. Moreover, both inflammatory and regulatory immune responses appeared to decrease during treatment, although the increase in IL-17A could reflect a partial continuation of immune activation.
Marathon runners, subjected to intense training regimens and prolonged, exhaustive exercises, often experience a compromised immune response. Probiotic supplementation has emerged as a potential remedy to mitigate the impact of prolonged exercise on athletes. Consequently, this study sought to assess the influence of probiotic supplementation on monocyte functionality both before and after the official marathon race. Twenty-seven runners were randomly and double-blindly assigned to two groups: placebo (n 13) and probiotic (PRO) (n 14). Over 30 d, both groups received supplements – placebo sachets containing maltodextrin (5 g/d) and PRO sachets containing 1 × 1010 colony-forming unit Lactobacillus acidophilus and 1 × 1010 colony-forming unit Bifidobacterium bifidum subsp. lactis. Blood samples were collected, and immunological assays, including phagocytosis, hydrogen peroxide production, cytokine levels and monocyte immunophenotyping, were conducted at four different intervals: baseline (start of supplementation/30 d pre-marathon), 24 h-before (1 d pre-marathon), 1 h-after (1 h post-marathon) and 5 d-after (5 d post-marathon). Monocyte populations remained consistent throughout the study. A notable increase in phagocytosis was observed in the PRO group after 30 d of supplementation. Upon lipopolysaccharide stimulation, both PRO and placebo groups exhibited decreased IL-8 production. However, after the marathon race, IL-15 stimulation demonstrated increased levels of 5 d-after, while IL-1-β, IL-8, IL-10, IL-15 and TNF-α varied across different intervals, specifically within the PRO group. Probiotic supplementation notably enhanced the phagocytic capacity of monocytes. However, these effects were not sustained post-marathon.
Edited by
Allan Young, Institute of Psychiatry, King's College London,Marsal Sanches, Baylor College of Medicine, Texas,Jair C. Soares, McGovern Medical School, The University of Texas,Mario Juruena, King's College London
Over the past few decades, the role of inflammation in the pathophysiology of depressive disorder and bipolar disorder has been the focus of considerable attention. In this chapter, we provide an update on the association between inflammatory processes and mood disorders, in light of available evidence. The pathophysiological and clinical implications of this association are critically discussed, as well as the interaction between inflammation, metabolic abnormalities, and medical comorbidities, which have important prognostic consequences for patients with mood disorders.
Chronic inflammation is linked with several deleterious diseases, including cardiovascular disease, obesity, diabetes mellitus, irritable bowel disease, and osteoporosis (1,2). Post-menopausal women are at a heightened risk of developing these diseases due to the remission of oestrogen, further amplifying a pro-inflammatory state (3,4). This study aimed to critically examine the combined effect of pre- and probiotic supplementation (synbiotics) and exercise in the form of ≥7,000 steps per day on inflammatory markers hs- CRP, IL-1β, IL-6, IL-8, IL-10, INF-γ and TNF- α in sedentary post-menopausal women. Eighty-seven healthy post-menopausal women were allocated to receive either a synbiotic supplement or placebo for 12 weeks. Participants’ demographics and physical activity levels were determined using questionnaires, and their diet was assessed using self-reported 3-day diet records. Body composition measures of height, weight and BMI were measured at baseline, while total body mass, lean body mass, total fat mass and total body fat percentage at baseline and week 12 using dual-energy X-ray absorptiometry. Fasted venous blood samples were collected to analyse inflammatory status before and after the intervention. Statistical analysis was performed using SPSS version 24, where outcome variables with multiple time points, were analysed using repeated measures ANOVA with the model, including time (baseline vs 12 weeks), intervention group (placebo vs synbiotic), and their interaction as fixed effects. The results showed no significant differences between the intervention group’s demographics, physical activity levels, and dietary intake (p > 0.05). The 12-week study duration (time) was found to have had a statistically significant effect on lowering hs-CRP (p <0.018), IL-8 (p <0.001), IFN-γ (p <0.001), TNF-α (p <0.001) and increasing IL-6 (p <0.001) and IL-10 (p <0.001) in both groups. However, the observed decrease in IL-1β (p <0.348) over time was not significant. The intervention type (synbiotic or placebo) significantly impacted IL-10 (p < 0.003). No significant interactions between time and group were observed across all other inflammatory markers (p > 0.05). The study duration increased total lean body mass (p <0.015) and decreased total body fat percentage (p <0.022) in both the placebo and synbiotic groups. At the same time, the intervention type (synbiotic or placebo) had no effect on total lean body mass, total fat mass, total body mass and percentage body fat in both groups (p > 0.05). The current study showed no notable differences between the placebo and synbiotic groups suggesting synbiotic supplementation is likely ineffective at reducing chronic inflammation in overweight, sedentary post-menopausal women living in New Zealand. However, future studies are needed to confirm these findings. Additionally, studies should investigate the effects of exercise and synbiotic supplementation separately in this population.
Edited by
Nevena V. Radonjić, State University of New York Upstate Medical University,Thomas L. Schwartz, State University of New York Upstate Medical University,Stephen M. Stahl, University of California, San Diego
Physical sequelae of anorexia nervosa (AN) include a marked reduction in whole brain volume and subcortical structures such as the hippocampus. Previous research has indicated aberrant levels of inflammatory markers and growth factors in AN, which in other populations have been shown to influence hippocampal integrity.
Methods
Here we investigated the influence of concentrations of two pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-α] and interleukin-6 [IL-6]) and brain-derived neurotrophic factor (BDNF) on the whole hippocampal volume, as well as the volumes of three regions (the hippocampal body, head, and tail) and 18 subfields bilaterally. Investigations occurred both cross-sectionally between acutely underweight adolescent/young adult females with AN (acAN; n = 82) and people recovered from AN (recAN; n = 20), each independently pairwise age-matched with healthy controls (HC), and longitudinally in acAN after partial renourishment (n = 58). Hippocampal subfield volumes were quantified using FreeSurfer. Concentrations of molecular factors were analyzed in linear models with hippocampal (subfield) volumes as the dependent variable.
Results
Cross-sectionally, there was no evidence for an association between IL-6, TNF-α, or BDNF and between-group differences in hippocampal subfield volumes. Longitudinally, increasing concentrations of BDNF were positively associated with longitudinal increases in bilateral global hippocampal volumes after controlling for age, age2, estimated total intracranial volume, and increases in body mass index (BMI).
Conclusions
These findings suggest that increases in BDNF may contribute to global hippocampal recovery over and above increases in BMI during renourishment. Investigations into treatments targeted toward increasing BDNF in AN may be warranted.
To investigate the effects of co-infection with Clonorchis sinensis (C. sinensis) on T cell exhaustion levels in patients with chronic hepatitis B, we enrolled clinical cases in this study, including the patients with concomitant C. sinensis and HBV infection. In this study, we detected inhibitory receptors and cytokine expression in circulating CD4+ and CD8+ T cells by flow cytometry. PD-1 and TIM-3 expression levels were significantly higher on CD4+ T and CD8+ T cells from co-infected patients than on those from the HBV patients. In addition, CD4+ T cells and CD8+ T cells function were significantly inhibited by C. sinensis and HBV co-infection compared with HBV single infection, secreting lower levels of Interferon gamma (IFN-γ), Interleukin-2 (IL-2), and TNF-α. Our current results suggested that C. sinensis co-infection could exacerbate T cell exhaustion in patients with chronic hepatitis B. PD-1 and TIM-3 could be novel biomarkers for T cell exhaustion in patients with Clonorchis sinensis and chronic hepatitis B co-infection. Furthermore, it may be one possible reason for the weaker response to antiviral therapies and the chronicity of HBV infection in co-infected patients. We must realize the importance of C. sinensis treatment for HBV-infected patients. It might provide useful information for clinical doctors to choose the right treatment plans.
The host immune system status remains an unresolved mystery among several malignancies. An immune-compromised state or smart immune-surveillance tactics orchestrated by cancer cells are the primary cause of cancer invasion and metastasis. Taking a closer look at the tumour-immune microenvironment, a complex network and crosstalk between infiltrating immune cells and cancer cells mediated by cytokines, chemokines, exosomal mediators and shed ligands are present. Cytokines such as interleukins can influence all components of the tumour microenvironment (TME), consequently promoting or suppressing tumour invasion based on their secreting source. Interleukin-10 (IL-10) is an interlocked cytokine that has been associated with several types of malignancies and proved to have paradoxical effects. IL-10 has multiple functions on cellular and non-cellular components within the TME. In this review, the authors shed the light on the regulatory role of IL-10 in the TME of several malignant contexts. Moreover, detailed epigenomic and pharmacogenomic approaches for the regulation of IL-10 were presented and discussed.
Both chronic hepatitis C virus (HCV) infection and opioids cause altered blood levels of cytokines. Previous studies have investigated levels of selected groups of cytokines in patients on opioid maintenance treatment. Little is known about the levels of multiple cytokines in patients with chronic HCV infection on opioid maintenance treatment. Our aim was to investigate the cytokine profile in patients with active HCV infection with and without opioid maintenance treatment.
Methods:
We conducted a cross-sectional study in an out-patients population included upon referral for antiviral hepatitis C infection treatment. The level of 27 cytokines was measured in serum using multiplex technology. Patients were interviewed using a modified version of the European addiction severity index. Data pertaining to weight, height, current medication, smoking habits, allergies, previous medical history and ongoing withdrawal symptoms were collected. Non-parametric testing was used to investigate differences in levels of cytokines between the two groups. A 3-model hierarchical regression analysis was used to analyse associations between cytokines and confounding variables.
Results:
Out of 120 included patients, 53 were on opioid maintenance treatment. Median duration of opioid treatment was 68.4 months. There were no demographical differences between the two groups other than age. IL-1β was lower and eotaxin-1 higher in the group on opioid maintenance treatment than in the non-opioid group. No other inter-group differences in the remaining cytokine levels were found.
Conclusion:
In HCV infection patients, the impact of chronic opioid administration on peripheral circulating cytokine level is minimal.
To investigate epidermal growth factor, transforming growth factor-α and interleukin-8 production in nasal mucosa irrigated with hypertonic 2.3 per cent solution with algae extracts, in comparison to 0.9 per cent NaCl during the first two weeks after surgery for nasal polyposis, in relation to symptoms and local findings.
Methods
This prospective study included 20 nasal polyposis patients postoperatively irrigated with hypertonic solution and 20 nasal polyposis patients postoperatively irrigated with isotonic solution. We evaluated nasal symptom score, endoscopic score and mediator levels in nasal secretions before and after irrigation.
Results
Following treatment, nasal symptom score and endoscopic score were significantly lower in the hypertonic solution group (p = 0.023; p < 0.001, respectively). The increase in the epidermal growth factor and the decrease in the transforming growth factor-α and interleukin-8 concentration were higher in the hypertonic group (p < 0.001 for all mediators).
Conclusion
Irrigation with a hypertonic solution was found to be more effective than an isotonic solution in nasal mucosa reparation.
Sexual health and, specifically, erectile function play an important role in the lives of many men. Lifestyle modification, considered first-line therapy for many disease processes, is often overlooked and underdiscussed, particularly with the advent of pharmacologic and surgical interventions to restore erectile function. Even though these medical and surgical interventions are highly successful, discussion of lifestyle modification for prevention of erectile dysfunction, as solo therapy, or as adjunct to other therapies, still plays a role in the armamentarium of the healthcare provider. The aim of our chapter is to review the literature assessing impact of lifestyle modification on erectile function.
The immune system is a highly dynamic element of physiology, sensitive to both the external environment and organism-intrinsic factors. Inflammatory responses of sufficient magnitude are required to maintain homeostasis and protect from disease, but must be resolved on an appropriate timescale to prevent excessive damage and chronic inflammation. The circadian clock is a critical regulator of immune function and circadian disruption is a known risk factor in multiple diseases, disturbing physiological processes and exacerbating inflammation. Interactions between the circadian clock and immune system are bidirectional, as pathogens and inflammatory molecules can themselves disrupt local rhythms in cells and tissues. Here, we discuss the evidence linking circadian disruption with maladaptive immune function, including studies of shift work, sleep deficiency, genetic disruption of rhythms, and animal models of inflammatory diseases.
Early flow cytometry studies revealed T cell activation in major depressive disorder (MDD). MDD is characterised by activation of the immune-inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS), including deficits in T regulatory (Treg) cells. This study examines the number of cannabinoid type 1 (CB1) and type 2 (CB2) receptor-bearing T/B lymphocytes in MDD, and the effects of in vitro cannabidiol (CBD) administration on CB1/CB2-bearing immunocytes. Using flow cytometry, we determined the percentage of CD20+CB2+, CD3+CB2+, CD4+CB2+, CD8+CB2+ and FoxP3+CB1+ cells in 19 healthy controls and 29 MDD patients in 5 conditions: baseline, stimulation with anti-CD3/CD28 with or without 0.1 µg/mL, 1.0 µg/mL, or 10.0 µg/mL CBD. CB2+ was significantly higher in CD20+ than CD3+ and CD4+ and CD 8+ cells. Stimulation with anti-CD3/CD8 increases the number of CB2-bearing CD3+, CD4+ and CD8+ cells, as well as CB1-bearing FoxP3+ cells. There was an inverse association between the number of reduced CD4+ CB2+ and IRS profiles, including M1 macrophage, T helper-(Th)-1 and Th-17 phenotypes. MDD is characterised by lowered basal FoxP3+ CB1+% and higher CD20+ CB2+%. 33.2% of the variance in the depression phenome (including severity of depression, anxiety and current suicidal behaviours) is explained by CD20+ CB2+ % (positively) and CD3+ CB2+% (inversely). All five immune cell populations were significantly increased by 10 µg/mL of CBD administration. Reductions in FoxP3+ CB1+% and CD3+ /CD4+ CB2+% contribute to deficits in immune homoeostasis in MDD, while increased CD20+CB2+% may contribute to the pathophysiology of MDD by activating T-independent humoral immunity.
Research implicates inflammation in the vicious cycle between depression and obesity, yet few longitudinal studies exist. The rapid weight loss induced by bariatric surgery is known to improve depressive symptoms dramatically, but preoperative depression diagnosis may also increase the risk for poor weight loss. Therefore, we investigated longitudinal associations between depression and inflammatory markers and their effect on weight loss and clinical outcomes in bariatric patients.
Methods
This longitudinal observational study of 85 patients with obesity undergoing bariatric surgery included 41 cases with depression and 44 controls. Before and 6 months after surgery, we assessed depression by clinical interview and measured serum high-sensitivity C-reactive protein (hsCRP) and inflammatory cytokines, including interleukin (IL)-6 and IL-10.
Results
Before surgery, depression diagnosis was associated with significantly higher serum hsCRP, IL-6, and IL-6/10 ratio levels after controlling for confounders. Six months after surgery, patients with pre-existing depression still had significantly higher inflammation despite demonstrating similar weight loss to controls. Hierarchical regression showed higher baseline hsCRP levels predicted poorer weight loss (β = −0.28, p = 0.01) but had no effect on depression severity at follow-up (β = −0.02, p = 0.9). Instead, more severe baseline depressive symptoms and childhood emotional abuse predicted greater depression severity after surgery (β = 0.81, p < 0.001; and β = 0.31, p = 0.001, respectively).
Conclusions
Depression was significantly associated with higher inflammation beyond the effect of obesity and other confounders. Higher inflammation at baseline predicted poorer weight loss 6 months after surgery, regardless of depression diagnosis. Increased inflammation, rather than depression, may drive poor weight loss outcomes among bariatric patients.
Our immune system is our greatest ally when it comes to protecting us from harm. It is designed to fight off infections, heal our wounds, and protect us from malignancy and autoimmune disease. Like all the other systems of our body, this system changes progressively through our lives. Unfortunately, its performance and skills of detection wane as we grow older. This makes us more vulnerable to infections. Some of these effects are inevitable. Others are not. There are things we can do to protect our immune system and mitigate some of the normal forces of aging. This becomes especially important when we reach 70 and older. Chapter outlines seven actions we can do to strengthen our immune system: Mediterranean Diet. Exercise. Keep up to date on vaccinations. Practice good hygiene. Sleep. Lower stress. Practice optimism.
There is limited literature on associations between inflammatory tone and response to sequential pharmacotherapies in major depressive disorder (MDD).
Methods
In a 16-week open-label clinical trial, 211 participants with MDD were treated with escitalopram 10–20 mg daily for 8 weeks. Responders continued escitalopram while non-responders received adjunctive aripiprazole 2–10 mg daily for 8 weeks. Plasma levels of pro-inflammatory markers—C-reactive protein, interleukin (IL)-1β, IL-6, IL-17, interferon-gamma (IFN)-Γ, tumor necrosis factor (TNF)-α, and Chemokine C–C motif ligand-2 (CCL-2)—measured at baseline, and after 2, 8 and 16 weeks were included in logistic regression analyzes to assess associations between inflammatory markers and treatment response.
Results
Pre-treatment IFN-Γ and CCL-2 levels were significantly associated with a lower of odds of response to escitalopram at 8 weeks. Increases in CCL-2 levels from weeks 8 to 16 in escitalopram non-responders were significantly associated with higher odds of non-response to adjunctive aripiprazole at week 16.
Conclusion
Higher pre-treatment levels of IFN-Γ and CCL-2 were associated with non-response to escitalopram. Increasing levels of these pro-inflammatory markers may be associated with non-response to adjunctive aripiprazole. These findings require validation in independent clinical populations.
Immunological and oxidative alterations have been reported around calving in dairy cattle. In addition, the levels of heavy metals rise in the blood around parturition, which might affect body systems. Therefore, in this Research Communication we evaluate the changes in whole blood lead (Pb), arsenic (As), and cadmium (Cd) around calving, in comparison with the beginning of the dry period, and assess the correlations of these elements with immunological factors and oxidative markers. Samples were collected from 30 clinically healthy dairy cows in the early dry period (−6 w), one week before expected calving (−1 w), and one week postpartum (+1 w). The highest concentrations of Pb, As, and Cd were observed at −1 w and all the three elements decreased after parturition leading to significantly lower As and Cd, compared to −1 w (P < 0.05). The lowest levels of tumor necrosis factor-alpha, immunoglobulin G, interleukin 4, interleukin 10 and haptoglobin were found at −1 w simultaneous with the highest measures of the heavy metals, with tumor necrosis factor-alpha being significantly lower at this time (P < 0.05). At −6 w, As concentration was significantly (P < 0.05) correlated negatively (r = −0.366) and positively (r = 0.417) with total antioxidant capacity and malondialdehyde, respectively. Furthermore, at −1 w Pb and As had significant (P < 0.05) negative correlations with interferon gamma (r = −0.502) and interleukin 4 (r = −0.483), respectively. After parturition, Pb was observed to be negatively correlated with total antioxidant capacity (r = −0.538, P < 0.05). The observed results revealed that the alterations in immunological factors and antioxidant capacity around parturition were correlated with Pb and As levels.
Disease is one of the most important causes of animal suffering. When diseases are treated the aim is to achieve rapid and permanent recovery and this helps to reduce the duration of suffering. It does not, however, alleviate suffering during the fulminant and recovery phases. Greater attention needs to be given to alleviating suffering and the signs of sickness during disease states. In this paper, the role of the cytokines in mediating sickness behaviour and suffering during disease is reviewed. The importance of sickness behaviour in improving the chances of recovery are considered, along with the potential use of anti-cytokine strategies in alleviating suffering in disease states.