Abstract. Let
H be the Hilbert class field of a
\text{CM} number field
K with maximal totally real subfield
F of degree
n over
\mathbb{Q}. We evaluate the second term in the Taylor expansion at
s\,=\,0 of the Galois-equivariant
L-function
{{\Theta }_{{{S}_{\infty }}\,}}\left( s \right) associated to the unramified abelian characters of
\text{Gal}\left( H/K \right). This is an identity in the group ring
\mathbb{C}\left[ \text{Gal}\left( H/K \right) \right] expressing
\Theta _{{{S}_{\infty }}}^{(n)}\,\left( 0 \right) as essentially a linear combination of logarithms of special values
\left\{ \Psi ({{z}_{\sigma }}) \right\}, where
\Psi :\,{{\mathbb{H}}^{n}}\,\to \,\mathbb{R} is a Hilbert modular function for a congruence subgroup of
S{{L}_{2}}\left( {{\mathcal{O}}_{F}} \right) and
\left\{ {{z}_{\sigma }}\,:\,\sigma \,\in \,\text{Gal}\left( H/K \right) \right\} are
\text{CM} points on a universal Hilbert modular variety. We apply this result to express the relative class number
{{h}_{H}}/{{h}_{K}} as a rational multiple of the determinant of an
\left( {{h}_{K}}\,-\,1 \right)\,\times \,\left( {{h}_{K}}\,-\,1 \right) matrix of logarithms of ratios of special values
\Psi ({{z}_{\sigma }}), thus giving rise to candidates for higher analogs of elliptic units. Finally, we obtain a product formula for
\Psi ({{z}_{\sigma }}) in terms of exponentials of special values of
L-functions.