We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a closed-form solution to a discounted optimal stopping zero-sum game in a model based on a generalised geometric Brownian motion with coefficients depending on its running maximum and minimum processes. The optimal stopping times forming a Nash equilibrium are shown to be the first times at which the original process hits certain boundaries depending on the running values of the associated maximum and minimum processes. The proof is based on the reduction of the original game to the equivalent coupled free-boundary problem and the solution of the latter problem by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are partially determined as either unique solutions to the appropriate system of arithmetic equations or unique solutions to the appropriate first-order nonlinear ordinary differential equations. The results obtained are related to the valuation of the perpetual lookback game options with floating strikes in the appropriate diffusion-type extension of the Black–Merton–Scholes model.
This paper studies a novel Brownian functional defined as the supremum of a weighted average of the running Brownian range and its running reversal from extrema on the unit interval. We derive the Laplace transform for the squared reciprocal of this functional, which leads to explicit moment expressions that are new to the literature. We show that the proposed Brownian functional can be used to estimate the spot volatility of financial returns based on high-frequency price observations.
In this paper, we consider a joint drift rate control and two-sided impulse control problem in which the system manager adjusts the drift rate as well as the instantaneous relocation for a Brownian motion, with the objective of minimizing the total average state-related cost and control cost. The system state can be negative. Assuming that instantaneous upward and downward relocations take a different cost structure, which consists of both a setup cost and a variable cost, we prove that the optimal control policy takes an $\left\{ {\!\left( {{s^{\ast}},{q^{\ast}},{Q^{\ast}},{S^{\ast}}} \right),\!\left\{ {{\mu ^{\ast}}(x)\,:\,x \in [ {{s^{\ast}},{S^{\ast}}}]} \right\}} \right\}$ form. Specifically, the optimal impulse control policy is characterized by a quadruple $\left( {{s^{\ast}},{q^{\ast}},{Q^{\ast}},{S^{\ast}}} \right)$, under which the system state will be immediately relocated upwardly to ${q^{\ast}}$ once it drops to ${s^{\ast}}$ and be immediately relocated downwardly to ${Q^{\ast}}$ once it rises to ${S^{\ast}}$; the optimal drift rate control policy will depend solely on the current system state, which is characterized by a function ${\mu ^{\ast}}\!\left( \cdot \right)$ for the system state staying in $[ {{s^{\ast}},{S^{\ast}}}]$. By analyzing an associated free boundary problem consisting of an ordinary differential equation and several free boundary conditions, we obtain these optimal policy parameters and show the optimality of the proposed policy using a lower-bound approach. Finally, we investigate the effect of the system parameters on the optimal policy parameters as well as the optimal system’s long-run average cost numerically.
We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension $n \geq 3$. This goal was already achieved in dimension $n=3$ or in any dimension $n \geq 3$ for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.
We consider estimation of the spot volatility in a stochastic boundary model with one-sided microstructure noise for high-frequency limit order prices. Based on discrete, noisy observations of an Itô semimartingale with jumps and general stochastic volatility, we present a simple and explicit estimator using local order statistics. We establish consistency and stable central limit theorems as asymptotic properties. The asymptotic analysis builds upon an expansion of tail probabilities for the order statistics based on a generalized arcsine law. In order to use the involved distribution of local order statistics for a bias correction, an efficient numerical algorithm is developed. We demonstrate the finite-sample performance of the estimation in a Monte Carlo simulation.
We consider De Finetti’s control problem for absolutely continuous strategies with control rates bounded by a concave function and prove that a generalized mean-reverting strategy is optimal in a Brownian model. In order to solve this problem, we need to deal with a nonlinear Ornstein–Uhlenbeck process. Despite the level of generality of the bound imposed on the rate, an explicit expression for the value function is obtained up to the evaluation of two functions. This optimal control problem has, as special cases, those solved in Jeanblanc-Picqué and Shiryaev (1995) and Renaud and Simard (2021) when the control rate is bounded by a constant and a linear function, respectively.
For every $n\geq 2$, Bourgain’s constant $b_n$ is the largest number such that the (upper) Hausdorff dimension of harmonic measure is at most $n-b_n$ for every domain in $\mathbb {R}^n$ on which harmonic measure is defined. Jones and Wolff (1988, Acta Mathematica 161, 131–144) proved that $b_2=1$. When $n\geq 3$, Bourgain (1987, Inventiones Mathematicae 87, 477–483) proved that $b_n>0$ and Wolff (1995, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton University Press, Princeton, NJ, 321–384) produced examples showing $b_n<1$. Refining Bourgain’s original outline, we prove that
The Brownian bridge or Lévy–Ciesielski construction of Brownian paths almost surely converges uniformly to the true Brownian path. We focus on the uniform error. In particular, we show constructively that at level N, at which there are $d=2^N$ points evaluated on the Brownian path, the uniform error and its square, and the uniform error of geometric Brownian motion, have upper bounds of order $\mathcal {O}(\sqrt {\ln d/d})$, matching the known orders. We apply the results to an option pricing example.
We prove existence and uniqueness for the inverse-first-passage time problem for soft-killed Brownian motion using rather elementary methods relying on basic results from probability theory only. We completely avoid the relation to a suitable partial differential equation via a suitable Feynman–Kac representation, which was previously one of the main tools.
Consider a Brownian motion on the circumference of the unit circle, which jumps to the opposite point of the circumference at incident times of an independent Poisson process of rate $\lambda$. We examine the problem of coupling two copies of this ‘jumpy Brownian motion’ started from different locations, so as to optimise certain functions of the coupling time. We describe two intuitive co-adapted couplings (‘Mirror’ and ‘Synchronous’) which differ only when the two processes are directly opposite one another, and show that the question of which strategy is best depends upon the jump rate $\lambda$ in a non-trivial way. We also provide an explicit description of a (non-co-adapted) maximal coupling for any jump rate in the case that the two jumpy Brownian motions begin at antipodal points of the circle.
In this paper, we analyze a two-queue random time-limited Markov-modulated polling model. In the first part of the paper, we investigate the fluid version: fluid arrives at the two queues as two independent flows with deterministic rate. There is a single server that serves both queues at constant speeds. The server spends an exponentially distributed amount of time in each queue. After the completion of such a visit time to one queue, the server instantly switches to the other queue, i.e., there is no switch-over time.
For this model, we first derive the Laplace–Stieltjes transform (LST) of the stationary marginal fluid content/workload at each queue. Subsequently, we derive a functional equation for the LST of the two-dimensional workload distribution that leads to a Riemann–Hilbert boundary value problem (BVP). After taking a heavy-traffic limit, and restricting ourselves to the symmetric case, the BVP simplifies and can be solved explicitly.
In the second part of the paper, allowing for more general (Lévy) input processes and server switching policies, we investigate the transient process limit of the joint workload in heavy traffic. Again solving a BVP, we determine the stationary distribution of the limiting process. We show that, in the symmetric case, this distribution coincides with our earlier solution of the BVP, implying that in this case the two limits (stationarity and heavy traffic) commute.
This paper deals with ergodic theorems for particular time-inhomogeneous Markov processes, whose time-inhomogeneity is asymptotically periodic. Under a Lyapunov/minorization condition, it is shown that, for any measurable bounded function f, the time average
$\frac{1}{t} \int_0^t f(X_s)ds$
converges in
$\mathbb{L}^2$
towards a limiting distribution, starting from any initial distribution for the process
$(X_t)_{t \geq 0}$
. This convergence can be improved to an almost sure convergence under an additional assumption on the initial measure. This result is then applied to show the existence of a quasi-ergodic distribution for processes absorbed by an asymptotically periodic moving boundary, satisfying a conditional Doeblin condition.
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
We derive closed-form solutions to some discounted optimal stopping problems related to the perpetual American cancellable dividend-paying put and call option pricing problems in an extension of the Black–Merton–Scholes model. The cancellation times are assumed to occur when the underlying risky asset price process hits some unobservable random thresholds. The optimal stopping times are shown to be the first times at which the asset price reaches stochastic boundaries depending on the current values of its running maximum and minimum processes. The proof is based on the reduction of the original optimal stopping problems to the associated free-boundary problems and the solution of the latter problems by means of the smooth-fit and modified normal-reflection conditions. We show that the optimal stopping boundaries are characterised as the maximal and minimal solutions of certain first-order nonlinear ordinary differential equations.
We consider two-dimensional Lévy processes reflected to stay in the positive quadrant. Our focus is on the non-standard regime when the mean of the free process is negative but the reflection vectors point away from the origin, so that the reflected process escapes to infinity along one of the axes. Under rather general conditions, it is shown that such behaviour is certain and each component can dominate the other with positive probability for any given starting position. Additionally, we establish the corresponding invariance principle providing justification for the use of the reflected Brownian motion as an approximate model. Focusing on the probability that the first component dominates, we derive a kernel equation for the respective Laplace transform in the starting position. This is done for the compound Poisson model with negative exponential jumps and, by means of approximation, for the Brownian model. Both equations are solved via boundary value problem analysis, which also yields the domination probability when starting at the origin. Finally, certain asymptotic analysis and numerical results are presented.
Let
$B^{H}$
be a fractional Brownian motion in
$\mathbb{R}^{d}$
of Hurst index
$H\in\left(0,1\right)$
,
$f\;:\;\left[0,1\right]\longrightarrow\mathbb{R}^{d}$
a Borel function and
$A\subset\left[0,1\right]$
a Borel set. We provide sufficient conditions for the image
$(B^{H}+f)(A)$
to have a positive Lebesgue measure or to have a non-empty interior. This is done through the study of the properties of the density of the occupation measure of
$(B^{H}+f)$
. Precisely, we prove that if the parabolic Hausdorff dimension of the graph of f is greater than Hd, then the density is a square integrable function. If, on the other hand, the Hausdorff dimension of A is greater than Hd, then it even admits a continuous version. This allows us to establish the result already cited.
A classical result for the simple symmetric random walk with 2n steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge when scaled to the arcsine law. Motivated by applications in genomics, we study the distributions of these statistics for the non-Markovian random walk generated from the ascents and descents of a uniform random permutation and a Mallows(q) permutation and show that they have the same asymptotic distributions as for the simple random walk. We also give an unexpected conjecture, along with numerical evidence and a partial proof in special cases, for the result that the number of steps above the origin by step 2n for the uniform permutation generated walk has exactly the same discrete arcsine distribution as for the simple random walk, even though the other statistics for these walks have very different laws. We also give explicit error bounds to the limit theorems using Stein’s method for the arcsine distribution, as well as functional central limit theorems and a strong embedding of the Mallows(q) permutation which is of independent interest.
It is well known that the height profile of a critical conditioned Galton–Watson tree with finite offspring variance converges, after a suitable normalisation, to the local time of a standard Brownian excursion. In this work, we study the distance profile, defined as the profile of all distances between pairs of vertices. We show that after a proper rescaling the distance profile converges to a continuous random function that can be described as the density of distances between random points in the Brownian continuum random tree. We show that this limiting function a.s. is Hölder continuous of any order
$\alpha<1$
, and that it is a.e. differentiable. We note that it cannot be differentiable at 0, but leave as open questions whether it is Lipschitz, and whether it is continuously differentiable on the half-line
$(0,\infty)$
. The distance profile is naturally defined also for unrooted trees contrary to the height profile that is designed for rooted trees. This is used in our proof, and we prove the corresponding convergence result for the distance profile of random unrooted simply generated trees. As a minor purpose of the present work, we also formalize the notion of unrooted simply generated trees and include some simple results relating them to rooted simply generated trees, which might be of independent interest.
We present closed-form solutions to some discounted optimal stopping problems for the running maximum of a geometric Brownian motion with payoffs switching according to the dynamics of a continuous-time Markov chain with two states. The proof is based on the reduction of the original problems to the equivalent free-boundary problems and the solution of the latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal stopping boundaries are determined as the maximal solutions of the associated two-dimensional systems of first-order nonlinear ordinary differential equations. The obtained results are related to the valuation of real switching lookback options with fixed and floating sunk costs in the Black–Merton–Scholes model.