No CrossRef data available.
Published online by Cambridge University Press: 26 May 2025
In this paper, we study asymptotic behaviors of a subcritical branching Brownian motion with drift $-\rho$, killed upon exiting
$(0, \infty)$, and offspring distribution
$\{p_k{:}\; k\ge 0\}$. Let
$\widetilde{\zeta}^{-\rho}$ be the extinction time of this subcritical branching killed Brownian motion,
$\widetilde{M}_t^{-\rho}$ the maximal position of all the particles alive at time t and
$\widetilde{M}^{-\rho}:\!=\max_{t\ge 0}\widetilde{M}_t^{-\rho}$ the all-time maximal position. Let
$\mathbb{P}_x$ be the law of this subcritical branching killed Brownian motion when the initial particle is located at
$x\in (0,\infty)$. Under the assumption
$\sum_{k=1}^\infty k ({\log}\; k) p_k <\infty$, we establish the decay rates of
$\mathbb{P}_x(\widetilde{\zeta}^{-\rho}>t)$ and
$\mathbb{P}_x(\widetilde{M}^{-\rho}>y)$ as t and y respectively tend to
$\infty$. We also establish the decay rate of
$\mathbb{P}_x(\widetilde{M}_t^{-\rho}> z(t,\rho))$ as
$t\to\infty$, where
$z(t,\rho)=\sqrt{t}z-\rho t$ for
$\rho\leq 0$ and
$z(t,\rho)=z$ for
$\rho>0$. As a consequence, we obtain a Yaglom-type limit theorem.